
Page 1 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

1

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 2 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

2

 1

 2

 3

 4

 5

Figure 1 � Keyboard Navigation Summary Overview

(1) The top line of keys can be used to quickly execute a program label when any of the labels A, B, C or D are

defined within a program by the user. If these are not defined, then the primary function of each key will be sigma

add, reciprocal, power or root respectively. Note that each of these functions is available elsewhere on the keyboard.

(2) Enters a number.

(3) The primary function of the XEQ key is to execute a function or program

(4) These scroll keys are used to move up or down within a program or a catalogue list

(5) The primary function of the EXIT key is a general escape or cancel button. Secondary functions are used to

switch the calculator on/off. Yellow shift switches between upper and lower case when entering text and blue shift

�SHOW� can be used to view any register (including the stack contents).

(6) Primary function of this key is to run/stop a program. Secondary functions include inserting labels, or subroutine

returns.

(7) Backspace key, with secondary function used to clear x, clear program or clear sigma data.

(8) Every Keys primary function is shown in white on the front face of the keys. Secondary functions are shown as

yellow, blue or green requiring a prefix of these respective f, g or h keys. Keys are used when entering text

characters � and these are shown as grey characters (shown at the bottom left of the key). For example the EEX key

is pressed when entering the letter �L�

(9) The CPX (complex) primary function is used as a prefix for commands that must execute in the complex domain.

Pressing CPX before + for example would perform a complex math addition. Observe that the green secondary

function of this key has an underline (MODE) which means that this key opens a catalogue of functions (in this case

related to the calculator mode of operation).

(10) The right arrow key is used as a prefix to force a conversion of whatever is in the X register. It can be used

before H.d, H.MS, DEG, RAD, GRAD. It can also be used before the bases �2� and �8� (+/- key) and �10�, �16� (EEX

key) to perform quick base conversions. Additionally this button is pressed to signify the use of indirect addressing

mode.

 10

 9

 8

 7

 6

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 3 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

3

WP 34S

RPN Scientific Calculator

Beginners Guide

Front cover: WP 34S by Walter, Pauli, Marcus, Neil, Eric and many others, accompanied by a

much loved HP 32E in the background

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 4 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

4

Dedicated to my wife who also helped me see the light

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 5 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

5

Index

Index .. 5
Table of Figures .. 9
Draft Release Change Details.. 10
If you ever find yourself in an unexpected mode? ... 12
Who am I? ... 12
Introduction ... 13

Where this document fits in and the inevitable legal disclaimer 15
Getting Started... 17

Switching On ... 17
Setting the LCD Display Contrast.. 18
Entering numbers... 18
Changing the sign of the number ... 18
Clearing .. 18
Functions using one number .. 19
Functions using two numbers... 21
Chain calculations .. 23

Setting the display format.. 24
Scientific display notation - SCI.. 24
Engineering display notation - ENG... 26
Fixed display notation - FIX ... 27

Fixed display notation � Engineering / Scientific Override 27
Setting the number of display digits - DISP ... 28
All display notation - ALL... 29
Viewing all digits in the Mantissa .. 30

Setting the angular format ... 31
Entering Exponents ... 31
Catalogues ... 33

Using catalogues to set calculator preferences ... 33
Setting UK preferences... 34

Quickly locating catalogue functions ... 35
Quickly locating catalogue functions with Greek letters 35

Fixing the display to four decimal places... 35
Setting the Time ... 36
Setting the Date.. 36
Reading the Time from the calculator... 37
Reading the Date from the calculator ... 37

The Automatic Memory Stack ... 38
Initial Display .. 38
Stack control - manipulation .. 39

Roll Down (and Roll Up) Key... 39
Exchanging X and Y ... 41
Clearing the Stack ... 42

The ENTER Key .. 42
Stack Arithmetic .. 44
Chain Arithmetic .. 45
Constant Arithmetic.. 48
Order of Execution ... 49
LAST X.. 50
Complex domain LAST X ... 51

Memory Organisation .. 52
Global registers.. 53

Global Register Access � Direct and Indirect ... 54
Global Register Access � Out Of Range Error... 55

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 6 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

6

Cumulative Summation Registers � Sigma Data ... 55
Program Steps & Subroutine Return Stack... 57

Local Data .. 57
Clearing memory to make space .. 58
Backing up the calculator memory - introduction.. 58
Backing up the calculator memory � hot key shortcut 59

Creating a new backup using ON & STO ... 59
Restoring a backup using ON & RCL... 59

How STO (+,-,/,x) and RCL (+,-,/,x) access items in memory...................... 60
STO and RCL register access - summary ... 61
How tests such as x=? access items in memory ... 61
Tests x=? register access summary .. 62
How simpler commands such as FIX access items in memory 62
Temporary Alpha Layout ... 63

Integer modes - using alternate bases... 65
Complement and unsigned mode ... 68

1�s Complement Mode.. 68
Viewing long number displays � introduction ... 69
Viewing very long 64 bit binary numbers... 71
Leading Zero�s ON / OFF switch.. 73

2�s Complement Mode.. 74
Unsigned Mode.. 74

Bit wise operations and integer math... 75
Integer arithmetic functions... 77

Addition, Subtraction, Multiplication and Division..................................... 78
Addition and Subtraction in 1�s complement mode................................... 79
The carry flag during addition ... 80
The carry flag during subtraction ... 80
Overflow � WP 34S flag B... 81
Remainder after division and RMDR ... 82
Square root .. 82
Negative Numbers � changing signs... 82
Negative Numbers � absolute value ... 82

Logical operations .. 83
Logical NOT .. 83
Logical AND .. 83
Logical NAND .. 84
Logical OR .. 84
Logical NOR .. 85
Logical XOR .. 85
Logical XNOR .. 86

Bit Shifting and Rotating ... 87
Shifting Bits.. 87

Logical Shifts ... 87
Left and Right bitwise Justification .. 88
Arithmetic Shift Right .. 89

Rotating bits ... 89
Rotation.. 90
Rotation through the carry flag... 90

Negating, Asserting and testing the state of bits .. 91
Testing bits... 91

Bit masks � left and right justified .. 92
Mirroring bits ... 92
Double Functions.. 92

Double Multiply - DBLx... 93
Double Divide � DBL/... 94
Double Remainder ... 95

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 7 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

7

Programming.. 97
Keying in our first program � �CIR� ... 98
Program Pointer ... 102
Program-Entry mode .. 102
Program-Step Number .. 102
Inserting new program steps ... 102
Deleting existing program steps ... 102
Branching and Calling � what�s the difference?... 103
Program Labels .. 103

Global Labels .. 103
Local Labels .. 104

Modifying �CIR� to demonstrate global AND hotkey local labels........................ 104
Predefined local program labels A, B, C, D � hotkey labels............................. 107
Key Code Labels ... 107
Number labels � 00 to 99 ... 110

Direct program execution using number labels... 111
Indirect program execution using number labels 112
Indirect addressing � used to access the stack... 113
Deleting a specific program ... 114
Deleting all programs.. 114
Saving Programs to the Flash RAM Library - advanced 114
Program Input / Output .. 115
The Alpha Register � how to display text... 116
Inserting special characters into alpha .. 118

Alpha Catalogues... 118
Common math symbol alpha catalogue .. 118
Common math symbols super/subscripted alpha catalogue............................ 119
Punctuation symbol alpha catalogue ... 120
Math symbols (stats & complex domain) alpha catalogue 121
Arrows and extra math symbol alpha catalogue .. 122

Other alpha characters obtained direct from the keyboard 122
English alpha characters (A-Z, a-z) ... 122
Number digits (0 to 9) ... 122
Logic symbols .. 123
Other useful h shifted misc symbols � including a space................................ 123
Other useful f shifted math symbols .. 123
Greek character symbols ... 124

Alpha Register Commands... 125
Parallel Resistor Program using static Alpha displays................................. 126

Archiving the program to the flash RAM library...................................... 130
Debugging the parallel resistor program... 131

Simple Counting Program � showing a dynamic Alpha display.................... 134
Counting Program illustrating Loop Control .. 136
Local Data - Variables ... 138
Local Data - Flags... 139
Local Data - limitations ... 139

Fractions.. 143
Fraction modes � how the display works ... 144

Exact fraction conversions .. 144
Inexact fraction conversions ... 145

Accuracy Indicators .. 145
Fraction Mode � Rounding ... 147
Fraction Mode � Limitations ... 147
Larger fractions.. 147
Controlling the fraction display format .. 148

Setting the maximum denominator.. 149
Setting the default fraction mode � max precision 149

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 8 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

8

Setting the fraction mode to employ factors.. 149
Setting a fixed fraction denominator .. 149

Using fractions in programs ... 149
Complex modes of operation - introduction .. 151

Complex mode - extra function catalogue.. 152
Complex number format ... 152
Entering complex numbers and invoking complex functions 153
The complex stack.. 154
Complex Operations ... 155
Operation on one complex number ... 155
Operation on two complex numbers.. 156

Unit conversions - introduction ... 158
Immediate Conversions .. 158
Functional based conversions... 159

Accepting a Conversion .. 160
Combining Conversions .. 160
Quick conversion inversion ... 161

Constants � Introduction.. 163
Use of constants in the complex domain.. 163

Statistical Functions - Accumulations ... 165
Deleting and Correcting Data ... 165
Finding the Mean.. 165
Standard Deviation... 166
Linear Regression... 168
Linear Estimation ... 170

Correlation Coefficient.. 170
Normal Distribution .. 171

Factorial .. 174
Percent of sum %∑ ... 175
Percentage Difference ∆%.. 176
Hyperbolic Functions ... 177
Calculator Hardware .. 180

Replacing the batteries ... 180
Hardware reset .. 181

Calculator Firmware .. 182
What version firmware is my calculator using?... 182
Upgrading firmware.. 182

Subject Index ... 183

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 9 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

9

Table of Figures

Figure 1 � Keyboard Navigation Summary Overview.. 2
Figure 2 � HP 42S side-by-side with a WP 34S.. 13
Figure 3 � Primary and Secondary key functions ... 17
Figure 4 � Table illustrating basic math two value operators 21
Figure 5 � Keyboard key codes for all keys... 108
Figure 6 � Use of local data within nested functions..................................... 141
Figure 7 � A Mixed fraction... 143

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 10 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

10

Draft Release Change Details
Release Draft Description

23
rd
 April 2012 2.06812 Base document � firmware version 3.0 2676

26
th
 April 2012 2.06813 Added new sections:-

1. Statistical functions accumulations

2. Factorial (!)

3. Percentage of sum (%∑)

4. Percentage difference (∆%)

5. Hyperbolic functions

Also added a note in the section giving examples of one-function operations to

demonstrate the 2
X
 command

27
th
 April 2012 2.06814 Extended the alpha register description section to illustrate how to obtain alpha math,

logic and punctuation symbols, and also Greek characters. The information also

shows the mapping between English and Greek letters.

28
th
 April 2012 2.06815

and

2.06816

Extended the alpha characters listings � to show screen grabs of all characters

(excluding English letters and numbers). The Greek section shows a properly ordered,

full set of upper and lower screen grabs. Note this includes the missing Psi, Theta, Eta

and a note regarding Omicron.

Rationalised the indexing of the alpha section to split it into catalogues and direct key

characters. Moved both indexes, and change history table using page breaks.

Indexing added to PDF shell, cut & paste content enabled. Added web link to email

link in footer.

1
st
 May 2012 2.06817 Added reference to the cpx h mode catalogue. Added section providing information on

changing LCD contrast, and also creating and restoring backups from flash ram. This

draft also provides a very small amount of information regarding archiving programs

to the flash RAM library.

2
nd

 May 2012 2.06818 For this draft � the test calculators have been flash upgraded from 3.0 2676 to

firmware release 3.0T 2830.

Corrects a mistake in the examples for string formats used by the SETTIM function,

and the two minor errors in the DBL/ command explanation. It also adjusts the

example in fractions dealing with the accuracy annunciation and shortens the

introduction.

9
th
 May 2012 2.06819 For this draft � the test calculators have been flash upgraded from 3.0T 2830 to 3.1

2932 and changes made to the fonts used in some of the examples. Also expanded

the hardware section to show how version information is displayed, and to provide

information on re-flashing.

25
th
 May 2012

This version

was drafted

after publically

announcing the

guide to the HP

Museum forum.

2.06820 This version contains the following changes

1. New front cover with nods to older HP guides (many thanks Jeff Dinkins)

2. Typo/spelling corrections (including the misspelling of Marcus � please accept

my humble apologies).

3. Extra explanation notes regarding the use of temporary alpha mode when using

the STO, RCL and test catalogue functions.

4. The automatic memory stack diagrams and the bitwise logic op diagrams made

smaller.

5. Key stroke sequences showing multi-digit entries (previously shown using one

box per digit), now use one box for the number for brevity.

6. Catalogue function name boxes now standardised in look.

7. Added extra notes regarding the use of complex constants

8. Mention made of move of the small advanced user catalogue

9. Notes added re: best use of up/down arrow when locating catalogue functions.

10. A slight reduction in accuracy has now been built into the memory section (to

allow for changes that will inevitable occur in the future).

11. The serial interface notes (Atmel processor) have been redrafted

12. The display mode section (in particular ALL and FIXed modes) have been

completely re-written in line with Pauls explanation � with worked examples.

13. Wording changes referring to I, L, J and K registers in the memory section.

14. The addition of a subject index at the end; created via concordance file.

15. The format of the special blue �NOTE� areas of text has been standardised.

13
th
 July 2012 2.06821 Assorted correction and changes as described by Dale Brandt. Many thanks Dale.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 11 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

11

Part 1

WP 34S

Introduction

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 12 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

12

If you ever find yourself in an unexpected mode?
The WP 34S can work in a number of different modes for example

floating point or integer and then in any of a number of different bases.

You might switch modes, and end up (as I did) with a display such as the

following:-

Seeing this display means that you have switched the calculator to

integer mode. The �h� indicates it is running base 16 (hexadecimal). The

�2c� means it is working in 2�s complement mode, and the 64 means it is

using 64 bits of precision. The �BEG� means that the program counter is

set to point to the beginning of program memory, and the 3 is (as you�d

expect for an RPN calculator) simply the contents of the X register.

If you were ever to find yourself with this display, press the yellow �f�

shift key, and then press the H.d key (which is a secondary function of

the RCL key) to switch back to normal floating point mode.

�and if you ever need to cancel a command mid way through, just click

the EXIT key (bottom left)

Who am I?
First I am not involved in the project to design the WP 34S calculator in any way

shape or form. Second I am not linked to Hewlett-Packard in any way � other

that by over 30 years of use of their fine calculator machines (and for marginally

less time, their printers).

I happened to stumble across the WP 34S project while searching the web for

information on a totally different HP calculator (the limited edition HP-15C

machine), and after reviewing the available WP 34S information felt it was rather

too interesting to ignore. I obtained a WP 34S from Eric and then started trying to

use it and that�s when the fun started. Personally I found the documentation

available so difficult to use that I decided to write my own self help guide. This

document was the result. It isn�t complete, and it isn�t perfect, it might even be

wrong but it may perhaps act as a starting point for a novice.

I am a software developer, who works mainly on back office web site software,

but with both a professional and personal interest in embedded hardware and

software design. I am rather interested in fuel injection systems and the control

and computing systems they require. I live in the UK with my wife (and our small

collection of HP calculators).

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 13 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

13

Introduction
Scientists and engineers are a very discerning lot and (like myself) are loyal

followers of Hewlett Packard who for many decades have specialised in designing

a particular style of calculator employing an efficient postfix notation known as

reverse polish notation (RPN). Historically the scientific and engineering market

has always been closely linked to HP products, across whole families of RPN

calculators stretching back to the late sixties and all characterised by the lack of

an equal�s key. We�ll look at RPN later, but in short it has the unique advantage

(compared to algebraic infix notation calculators) of avoiding the need for

parenthesis which is both cumbersome to use and error prone. As a student,

learning RPN had the added benefit of teaching me to think about the problem I

was trying to solve � which in turn led to the benefit of both being able to

estimate and constantly check my results before ending up with a number in a

calculator display. The fact that you can see and use intermediate results easily

when using RPN is perhaps its chief asset.

Once RPN is mastered, I doubt many would choose to go back to algebraic entry.

Scientists and engineers have been yearning for a successor to arguably the best

Hewlett Packard calculator ever made � namely the HP 42S. The 42s was built as

a successor to the fine HP 41CV and although the two were software compatible,

the newer machine did not possess the same degree of hardware expandability.

That said, it was smaller, had a much longer battery life and a two line LCD

display facilitating an intuitive menu based user interface.

Figure 2 � HP 42S side-by-side with a WP 34S

Released in 1988, but discontinued in 1995 these fine calculators routinely sell for

two to three hundred pounds second hand on eBay. They are an object lesson to

HP that there is still significant demand for high end, non-graphing scientific

calculators�

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 14 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

14

The WP 34S machine is an open source project designed to address this market

need. The history of the project is relatively well documented online and doesn�t

need to be repeated here other than to summarise that the project started

around 2004 and built on code originating from the �OpenRPN� ideal employing a

community approach to developing RPN hardware and software and which

eventually led to a collaboration between a group of like minded people (Walter,

Paul, Marcus, Neil, Eric and many others) with the intention of developing what

might be thought of as a HP-42sII. Early revisions extended the test systems by

using existing HP calculators re-flashed with new firmware.

These started with a machine based on the existing HP 20b model but culminated

in a project to reuse the HP 30b model (a financial calculator) with the following

specifications

1. Two line display

a. 400 segments (12x9 mantissa, 3x7 exponent and 2 signs).

b. 6x43 dot matrix

c. And a set of 11 individual annunciators

2. Atmel CPU (AT91SAM7L128)

3. Serial port for CPU reflashing. The connector employed is located behind

the battery cover, and has a six pin interface (serial transmit, serial

receive, ground, Vcc along with reset and erase strobes). This interface

adheres to an Atmel specific protocol for both erasing and flashing the CPU

firmware. There is an additional JTAG connector on the PCB (a set of

solder pads) but which is not accessible outside of an unmodified plastic

calculator housing.

4. 37 Key keyboard (6 columns, 7 rows) � using HP�s rotate and click key

design.

By contrast, the HP 30b keyboard is a good standard and while not quite as good

as some HP machines it is vastly better than either the 49g or 50g.

The processor in the HP 30b is a good platform upon which to base the re-

purposed machine because it is quick and the hardware modifications required to

support the change are reasonably straightforward. The unit has to be

disassembled, a 32768Hz crystal and some surface mount C�s added to the PCB

to serve the real time clock (RTC). The unit is then reassembled and the CPU

flashed using a serial port built into the case inside the battery compartment. At

that point, the old HP 30b and all its financial software is no more. The final task

remaining is to place a good quality printed vinyl overlay over the top of the

keyboard and key heads. While the overlay isn�t perfect and may wear with time

it is very usable and of impressive quality.

Voila, a WP 34S is born.

Note
The �rotate and click� keyboard design is an important selling point for any experienced HP

user. Most users are attracted to HP calculators because of RPN, the sophistication of the

software and the quality, durability and feel of the rotate and click keyboards.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 15 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

15

Where this document fits in and the inevitable legal disclaimer
This is first and foremost a beginner�s guide. It has been written to provide a

basic working knowledge of the calculators operation. It is not meant to stray into

the territory of what might be classed as advanced use - nor does it define the

complete list of WP 34S functions built into the machine, nor the constants, nor

the conversions available, nor the full list of catalogues. Paul and Walters manual

covers all of those more formal definitions for the WP 34S.

If however this guide helps you on your journey, consider it a bonus which cost

you nothing to enjoy.

Good luck and enjoy the machine!!

Note
This document is not an endorsement of the WP 34S machine and it makes no claim that the

WP 34S is fit for any purpose whatsoever. I make no claim that this beginner�s user guide is

fit for any purpose whatsoever. If you choose to use either the WP 34S or this beginner�s

guide document then you do so entirely at your own risk.

Don�t blame me if something goes wrong.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 16 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

16

Part 2

WP 34S

Getting Started

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 17 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

17

Getting Started

Most keys on the keyboard perform multiple functions. The primary function of a

key is always shown as white text on the main face of the key (the one exception

being the EXIT or ON key. When the calculator is running, this key has the

primary function of acting as a generalised escape or cancel function key.

However, when the calculator is switched off, the primary function is to switch the

device on).

Other key functions are colour coded, and require one of the three colour shift

keys (yellow �f� key, blue �g� key or the green �h� key) to be pressed prior to

using. Lastly, some keys can be used when the calculator is in alpha text mode,

in order to enter specific alpha characters.

A good example is the digit 7 key which looks as follows. The primary function of

this key is shown in point (1). Secondary functions are shown in points (2)

through (4) and the alpha text character is shown in point (5).

Figure 3 � Primary and Secondary key functions

Switching On

To switch the WP 34S ON simply press the bottom left hand key � which is

marked EXIT (it shows the word �ON� underneath).

To switch the calculator off, press the green �h� key, and then the �OFF� key,

which is a secondary function of the EXIT key. We could show this pictorially as:-

h OFF

(1) The keys primary

function is to enter

the digit �7�.

(2) The �logical AND� is a secondary

function which is accessed by first

pressing the green �h� key followed

by this key. The AND function only

applies when the calculator is

switched into integer mode.

(3) The �Log of X for base 10� is a

third secondary function, which this

time is accessed by first pressing the

blue �g� key followed by this key

(4) The �inverse Log of X for base

10� is a fourth secondary function,

which is accessed by first pressing

the yellow �f� key followed by this

key

(5) Lastly this key is also used when

entering alpha text characters into

the calculator. Pressing this key in

an alpha mode will enter the letter

�M�

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 18 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

18

The calculator will automatically power off after a period of inactivity. Early

revisions of the firmware used a very short timeout but later revisions extended

the timeout to 10 minutes.

Setting the LCD Display Contrast

You can adjust the display contrast by pressing two keys at the same time.

To change the display contrast press and hold the EXIT key and then at the same

time repeatedly press either the minus key (-) to reduce, or the plus (+) key to

increase. The display will show the annunciation word �Contrast� with either a

prefixed minus or plus and the display will change accordingly.

Entering numbers

Enter numbers by pressing each digit in sequence just as they would appear on

paper, inserting a decimal point when required. Note that if the calculator is

working in UK mode (see Setting Preferences section below) then commas will be

automatically inserted for you.

Changing the sign of the number

To change the sign on the number, press the +/- key

Clearing

You can either use the backspace key to clear one digit at a time, or you can

prefix the backspace key with a green �h� shift to clear the entire X register.

The primary function of

this key is coloured white
This is one (of potentially

many) secondary functions

each with their own unique

colour. This one is coloured

green, and so the green

�h� key must be pressed

prior to this key being

pressed

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 19 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

19

We could show this pictorially as follows: First when clearing individual digits click

the backspace key each time a digit should be removed�

Second when clearing the entire X registers entry and returning to a zeroed

display

Functions using one number

One number functions only require one argument. Consider finding the logarithm

(base 10) of the value 1.2149. We first type in the number 1.2149, and then

execute the log command (which is the blue secondary function on digit 7).

Pictorially, the key sequence would be�

The resulting display would show Log10  as:-

To find the trigonometric Sine of 45 degrees � then assuming the calculator is in

degrees mode, type 45 and execute the SIN command (which is the yellow

secondary function on the �B� key - top row). Pictorially, the key sequence would

be�

Note
In the keystroke diagram above we�ve shown the number 1.2149 as a set of six boxes each

representing one keystroke. From now on we will abbreviate these keystroke diagrams to

show numeric values using a single box � for example:-

1.2149 g LG

45

SIN f

1 . 2 4 9 g LG 1

h CLx

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 20 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

20

The resulting display would show Sin(45) as:-

A useful function for computer engineers is one that raises 2 to some value x. For

example � if the address bus of a microcontroller has 13 bits connected to the

memory IC�s � how much memory can be addressed?

The display will confirm 8K of addressable memory can be accessed.

13 2X f

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 21 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

21

Functions using two numbers

Two-number functions are functions that require two numbers in order to

execute. Addition, subtraction, multiplication and division are all examples of two

number functions (there are others, for example y
X
). These functions work the

same way as one number functions � in the sense that the function itself (for

example �multiply�) operates WHEN the key is pressed.

This means, that BOTH numbers must be present WHEN the key is pressed.

To place two numbers into the calculator and perform an operation

1. Key in the first number

2. Press the ENTER key to separate the first number from the second

3. Key in the second number

4. Press the desired function key.

All standard arithmetic operations are performed in this way.

Solve Key strokes Display

16 + 8



16 � 8



16 x 8



16 ÷ 8



Figure 4 � Table illustrating basic math two value operators

Another example of a two number function is y
x
. This function is invoked when

raising a number (Y) to a power (X). It works the same way as above ie:

1. Key in the first number (Y)

2. Press ENTER to separate the first number from the second

3. Key in the second number (X)

4. Execute the y
x
 function

For example � consider raising 2.5 to the power of 4

2.5 ENTER 4 f yX

16 ENTER 8 ÷

16 ENTER 8 ×

16 ENTER 8 -

16 ENTER 8 +

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 22 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

22

The display would show:-

On the WP 34S there are actually two ways we can tackle this problem (and also

any other similar one or two number functions involving reciprocals, roots and

sigma data entry).

This particular shortcut makes use of a special set of keys at the top of the

calculator labelled A, B, C and D. If these keys are currently not being used (as

labels) in any program(s) written on the calculator then respectively these keys

perform sigma data addition, reciprocal, powers and square root.

Let us assume for arguments sake that you haven�t yet written any programs

involving these keys. Performing the same function (raising 2.5 to the power 4)

would involve the following key sequence

Try the following simple examples

Solve Key strokes Display

18
3



12
2



400
.5



3
18



3 ENTER 18 yX

400 ENTER .5 yX

12 ENTER 2 yX

18 ENTER 3 yX

2.5 ENTER 4 yX

Where this key is the

third key along, on

the top row of keys

marked as y
X
 and C.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 23 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

23

Chain calculations

The value of the RPN system becomes apparent when dealing with chain

calculations which works in a similar way to a paper based solution.

Example: Solve (12 + 14) * 5

On paper you would solve the portion in brackets first, and then multiply by 5

26 multiplied by 5 is: 130.

You work through the problem in much the same way on the calculator. First

obtain the intermediate result of 12 + 14

Keystrokes LCD Display

12 

ENTER 

14 

+ 

�and then solve the multiplication for the final answer. Note that you don�t use

the ENTER key to store the intermediate result of 26. It is automatically stored

inside the calculator as soon as you type the next number.

Continuing�

5 

X 

Pressing the function key (X) gives the final answer of 130.

This highlights some of the key advantages of RPN over most other calculators.

 You only ever have to work with one function at a time. In effect the logic

forces you to cut problems down to a manageable size.

 Intermediate results appear as they are calculated

 Pressing a function key executes immediately � which means you see the

result immediately

 There is no need to take special action with intermediate results because

they are stored automatically

 You approach problems just as you would with pen and paper.

26

(12 + 14) x 5

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 24 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

24

Setting the display format
Internally � the calculator always works with numbers that have full 16 digits

precision along with a three digit exponent. Regardless of the fact that the

internals of the calculator always work with 16 digits, there are two formats that

can be used to control the display of results to the user.

1. The number can be rounded to a specific number of digits. There are three

modes that achieve this�

a. SCI (scientific notation) mode � fixes the number of decimal places

and rounds the display to provide the desired number of decimal

places but this format always uses a free ranging exponent. This

mode is particularly useful when numbers are very large or very

small.

b. ENG (engineering notation) mode � fixes the number of decimal

places and again rounds the display to provide the desired number

of decimal places. Just like scientific mode, this format always uses

an exponent � but one where the value is always in multiples of 3.

For example 24 kHz (24x10
3
), or 15.6S (15.6x10

-6
).

c. FIX (fixed-decimal notation) mode � fixes the number of decimal

places. The final result is rounded to provide the desired number of

decimal places. Note that this is the default mode for many HP RPN

calculators.

OR�

2. The calculator can be set to display all the digits in a number (note that

trailing zeros will be blanked). This is known as the �ALL� display mode

format.

Scientific display notation - SCI
The scientific notation can be useful when working with large or small numbers.

To select a scientific display rounded to 4 decimal places use the following

sequence

Note
Both the ALL and FIX modes of display have an interesting dilemma. What should the

calculator do if the number in the X register has a large number of zeros following the

decimal point? In other words at what point should the WP 34S forcibly switch to a better

display mode? We will look at this issue further on

h 4 SCI

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 25 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

25

Consider the following examples

Keystrokes Display

 Note that as soon as this value is entered, the

calculator immediately converts the value to an

exponent value of 1.2345678 x 10
2

h 7 SCI

h 4 SCI

h 2 SCI

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 26 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

26

Engineering display notation - ENG
Engineering notation can be useful when working with large or small numbers in

such a way that the exponent is always some multiple of 3. To select the

engineering display rounded to 4 decimal places use the following sequence

Consider the following examples where we are displaying Pi divided by 9. Note

that the exponent shows a power of 3.

Keystrokes Display

h π ÷ 9

h 7 ENG

h 4 ENG

h 4 ENG

h 2 ENG

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 27 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

27

Fixed display notation - FIX
To use a fixed display showing 4 decimal places use the following sequence

With (π x 4) the display will show the following:-

Setting a fixed display with zero decimal places results in the following:-

So when the X register contains 12.5664 and the display mode is set to FIX but

with zero decimal places then the calculator rounds up the display to 13.

Fixed display notation � Engineering / Scientific Override
As mentioned above, FIX has to cope with a specific problem occurring when the

number of zero�s after the decimal point exceeds the fixed number of places. For

example consider fixing the display to four decimal places and then repeatedly

dividing π by 10. On the fifth division, the X register would contain ,

and so the FIX command has to switch to a different mode (so that it doesn�t

misrepresent the number by displaying only ). By default it will switch to

scientific mode, but you can override this default action and force the calculator

to switch either to engineering or scientific mode. You do this using either the

ENGOVR, or the SCIOVR command.

To set the calculator to switch into scientific mode, under these particular

circumstances, invoke the SCIOVR command using the following key sequence.

Alternatively to switch into engineering mode under these circumstances invoke

the ENGOVR command using the following key sequence.

With the value of Pi in the display divided 5 times by 10 - setting a scientific

override results in a display of 3.1416x10
-5

, whereas setting an engineering

override results in a display 31.416x10
-6

h ENTER ENG

h ENTER SCI

h 4 FIX

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 28 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

28

Setting the number of display digits - DISP
FIX, SCI and ENG each take an argument setting the number of digits displayed.

For example FIX 4 will set the display to round with four digits after the decimal

point (for example 3.1415).

There is an additional command in the MODE catalogue called DISP which allows

the user to set the number of digits without changing the underlying display

notation (FIX, SCI or ENG).

(When the display notation is set to ALL, then the DISP argument will change the

switchover point � see ALL display mode notes below).

To switch to 6 decimal places while keeping the existing display notation � the

following key sequence would be used.

h 6 MODE DISP D

We can then either use the up or

the down scroll buttons to locate the

DISP function. We illustrate this

using a symbol showing both up and

down arrows. (See (4) on Keyboard

Navigation Summary Overview)

The �D� character (located

in the top row of keys) is

typed here to quickly find

the first command in the

�mode� catalogue that starts

with the letter �D�

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 29 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

29

All display notation - ALL
As we�ve seen, the FIX, SCI and ENG display mode commands each take an

argument defining how many characters should be displayed after the decimal

point.

The ALL display mode is quite different. Regardless of the argument you provide

to this command, setting ALL mode sets the calculator to display as many digits

as it has available. The argument you provide is actually used to define how many

zeros are allowed to exist after the decimal point before the calculator switches to

a better display mode. Consider the following example where we start by taking

Pi, multiplying by 40 and then dividing by 100000.

Keystrokes Display

Dividing this value again by 10 results in three zeros after the decimal point, and

so as four zero�s are required before a change occurs, the display remains as is.

Dividing by 10 one more time results in four zeros after the decimal point which is

the threshold for switching. The calculator then switches to a different mode.

You�ll notice that the calculator switches to SCI mode. Just as per the FIX display

mode you can control which of engineering or scientific mode is used by invoking

either the SCIOVR command to force scientific mode, or the ENGOVR command

to force engineer mode (see the section above entitled �Fixed display notation �

Engineering / Scientific Override�)

÷ 10

÷ 10

÷ 100000

h ALL 04

h π × 40

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 30 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

30

Viewing all digits in the Mantissa
The calculator can be forced to reveal the first 16 digits of the mantissa and the

exponent of a number using either of the horizontal scroll keys (◄(and)►). Note

that in this context both keys perform exactly the same function.

For example � enter e
1
 and click the left horizontal scroll to see the value of the

constant e � using the following key strokes

The calculator will reveal the first 16 digits of the mantissa of the constant with

the first four digits shown at the top left (2718), and the subsequent 12 digits

shown on the line below (281828459045). The exponent is shown on the far right

� and in this case an exponent of 000 indicates that the decimal point sits

between the 1
st
 and the 2

nd
 digits (between the 2 and the 7).

The display confirms the approximation of e as: 2.718281828459045

1 f ex f ◄(

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 31 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

31

Setting the angular format
A number of trigonometric functions depend on knowing the particular angular

format to use. These formats all describe an angle of rotation, but just adhere to

a different standard. Generally most calculators ignore the rather uncommon

format known as turns, and instead offer the three most popular formats namely

degrees, radians and gradians. The WP 34S is no different.

Degrees range from 0
o
 to 360

o
, radians from 0 to 2π and gradians from 0

g
 to

400
g
. Some of the most common angles in each of the three formats are

compared in the table below

Units Angular (rotation)

Degrees 0
o
 30

o
 45

o
 60

o
 90

o
 180

o
 270

o
 360

o

Radians 0 π/6 π/4 π/3 π/2 π 3 π/2 2 π
Gradians 0

 g

(100
/3)

g
 50

g

(200
/3)

g
 100

g
 200

g
 300

g
 400

g

To set the calculator into a desired angular format use the following key strokes

Action Keystrokes

Sets the calculator to work in degree mode

Sets the calculator to work in radian mode

Sets the calculator to work in gradian mode

Note these are not conversions, and should not be thought of as such. Instead

you are switching the calculator into the mode where (for example) if radians

were set, then the calculator would treat 2π as one full angular rotation. As such a

subsequent call to take the Cosine of 2π would return 1.0000.

See the Unit Conversions section if you wish to convert from one unit to another.

Entering Exponents
Assume for the sake of this discussion that the calculator is now set to a fixed

display rounded to four digits.

You can enter numbers multiples by powers of 10 by using the EEX (enter

exponent key. For example � key in 12.8 trillion (12.8 x 10
12

) and multiply it by

32

GRAD g

RAD g

DEG g

12.8 EEX 12 ENTER 32 ×

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 32 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

32

After the exponent is entered, and before the Enter is clicked the display will

show what has been typed.

Once the �ENTER� key is clicked, the display will be corrected to show one integer

place only (and the Exponent will be raised by a factor of 10).

The final multiplication by 32 gives the result

Note that directly after EEX is clicked, the �+/-� key can be pressed to change

the sign of the exponent. So for example the following keystrokes would enter

12.8 x 10
-12

Resulting in the following display

12.8 EEX 12 ENTER +/-

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 33 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

33

Catalogues
The WP 34S contains a great many built in functions designed to solve a range of

mathematical problems - everything from statistics and probability right through

to the complex domain.

The WP 34S uses a set of catalogues, where each holds a group of related

functions. For example there is a catalogue called PROB holding probability

functions and a separate catalogue called STAT holding statistics functions.

You can easily recognize catalogue names, because each has an underline on the

keyboard.

The WP 34S contains the following catalogues.

Catalogue Description

h CONV This catalogue holds the full suite of conversion functions � for example

temperature conversions such as
o
F to

o
C.

h MODE This catalogue holds functions that control the calculator itself. For example

functions that define how the fraction mode of the calculator behaves, and what

stack size should be used. Other functions control the geographical preferences and

the math system to use when employing integer modes of operation (ie: 2�s

complement).

h CONST This catalogue holds a fixed range of constant definitions. Constants such as

Faraday�s constant, Euler�s e and π are all stored here.

h PROB This catalogue holds a set of functions linked to probability theory.

h STAT This catalogue holds a set of functions linked to statistics.

h SUMS This catalogue holds a set of functions linked to the summation of data.

h MATRIX This catalogue holds a set of functions linked to matrix manipulation.

h TEST This catalogue holds a set of functions used to conditionally test registers

(generally used within programs)

h P.FCN This catalogue holds a set of functions most commonly used in programs.

h X.FCN This catalogue holds a set of functions generally grouped as extra functions

h CAT This catalogue reveals the functions in main memory.

CPX h X.FCN This catalogue (opened by prefixing the X.FCN catalogue name with the complex

CPX button) holds a set of extra functions dedicated to the complex domain.

CPX h MODE A small catalogue with advanced functions for advanced users only. Note that later

revisions of the firmware will move these functions to the P.FCN catalogue

The best way to become familiar with catalogues is simply to use them. We can

do that by setting up calculator preferences along with the date and time.

Using catalogues to set calculator preferences
When the calculator is first commissioned, it will (normally) be fitted with a

crystal to drive the on-board real time clock. Assuming that is true then the time

and date can be configured (if this assumption is not true then the following

command sequences may hang the machine. On later revisions of the firmware,

there is a function in the TEST catalogue called XTAL? and which returns true if a

crystal is installed in the machine).

Let�s now look at the command sequences required to configure the WP 34S for

UK operation and which allow us to set the time and date. To do that we will

Note
When you get to the section covering the alpha register, you will discover an additional set

of catalogues used to hold special characters (for example Greek letters, mathematical

symbols and punctuation etc). These are known as alpha catalogues.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 34 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

34

employ a number of special functions located inside two of the built in catalogues.

We will also set the display control feature.

Setting UK preferences
(1) To set UK preferences (so that the calculator (a) uses a decimal point as

the radix mark, (b) adds three digit separators, and (c) displays the time

as 12 hour and the date in the format D.MMYY) we would use the

following key sequences

a. Click the green shift �h� key

b. Click the �MODE� function (on the CPX key � top right) which will

open the mode catalogue and display the first function name in the

list.

c. Click the �S� key (associated with the number 6 and shown on the

bottom left of that key) which will prime the catalogue to quickly

move to the first function in the alpha sorted list starting with the

letter �S� (for example SEPOFF is one of the functions you will find)

d. As SETUK must be slightly further down in an alpha sorted list of

functions you would repeatedly click the down arrow key until you

located �SETUK� in the display.

e. Click the XEQ function to execute the SETUK command OR click the

EXIT button to cancel.

Note
As you might expect, there is actually nothing to stop you scrolling the other way through

the list of functions (using the up arrow key) but off course that approach does involve

traversing virtually all functions in this alpha sorted list before finally reaching your desired

function. The following notes assume that you�ve understood this point.

h MODE S SETUK XEQ

We can then either use the up or

the down scroll buttons to locate the

SETUK function. We illustrate this

using a symbol showing both up and

down arrows. (See (4) on Keyboard

Navigation Summary Overview)

START END

The �S� character (located on

the digit �6� key) is typed

here to quickly find the first

command in the �mode�

catalogue that starts with the

letter �S�

Key sequence

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 35 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

35

Quickly locating catalogue functions
In the example above, you saw how you typed the letter �S� to quickly get the

calculator to show all functions starting with the letter S. In fact this idea can be

extended, in the sense that you can type two letters to further narrow the

selection of functions on display. For example in the MODE catalogue if you typed

the letter �S� followed by the letter �L� then the calculator would select the

function �SLOW� because it is the only function starting with those two letters.

Quickly locating catalogue functions with Greek letters
In addition � some functions in catalogues start with letters of the Greek

alphabet. For example the constant catalogue �CONST� has definitions starting

with the Greek letter gamma, and also the extra function catalogue X.FCN has

functions starting with the Greek letter alpha (linked to the alpha register which

we will look at later).

You can quickly locate these functions by pressing the Greek equivalent English

letter prefixed with the blue (g) shift key. For example to quickly locate a function

in the X.FCN catalogue starting with alpha, you would simply use the key

sequence g A immediately after opening the catalogue.

Fixing the display to four decimal places
It�s a matter of personal preference how you would like the calculator to display

floating point numbers. Some people prefer it to be fixed to four decimal places of

precision (which was for example the default display mode for many of the older

LED calculators such as the HP 32E). Some prefer it in scientific mode (where

every number is shown with an exponent and which is very useful when dealing

with very large or very small numbers), and some prefer engineering mode

(where every number is shown with an exponent, but in multiples of 3). As an

example � we will set our display to work with fixed four decimal places.

Later we will change this to six.

(2) Set the calculator to fix the display to 4 decimal places

a. Click the green shift �h� key

b. Click the �FIX� function (under the �B� key on the top row)

c. Click the number 4 to set four digits of precision.

Again - we can show this sequence pictorially as follows

Note how the function FIX takes the number four as its value to use. We say FIX

takes the argument 4.

Note
In early revisions of the calculator firmware two letters used in this way had to be typed

quite quickly. Later revisions of the firmware eliminate that requirement and make it

altogether more relaxed. A timeout is still employed, but it is now very much longer (4-5

seconds or so). Later revisions also permit the backspace key to clear one or both typed

letters.

h 4 FIX

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 36 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

36

Setting the Time
To set the time you type the numeric time value into the X register using the 24

hour format H.MMSS and press enter. You then execute the �SETTIM� function

which is located in the MODE catalogue.

The following examples will make the required time format clear

Time X register contents

12:04:59am 

18:24:05 

1.27pm 

14:08:10 

Note the last example � if the calculator happened to be in a different display

mode, then the trailing zero could become truncated. Keep that point in mind

(3) To set the time in the calculator

a. Type the current time value into the X register (see above format)

and press ENTER

b. Then find and execute the SETTIM function in the mode catalogue

Setting the Date
To set the calculator date you first type the numeric time value into the X register

using the format D.MMYYYY and then press enter. You then execute the �SETDAT�

function which again is located in the MODE catalogue.

Remember earlier, we fixed our display to four decimal places � which means in

the case of a date formatted with a value D.MMYYYY we would actually lose the

two last digits of the year. So in order to avoid confusion, let�s now fix to 6

decimal places.

(4) Set the calculator to fix the display to 6 decimal places

The following date value examples will make the required date format clear

Date X register contents

1 Sept 2018 

24 July 2019 

1 Jan 2020 

(5) To set the date in the calculator

a. Type the current date value into the X register (see above format)

and click ENTER

h 6 FIX

h MODE S SETTIM XEQ

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 37 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

37

b. Then find and execute the SETDAT (set date) function in the mode

catalogue

Reading the Time from the calculator
Leaving the calculator set to fix the display to 6 decimal places, you can read the

time and date using the �TIME� and �DATE� functions in the extra function

(X.FCN) catalogue.

The following sequence will display the current time

The resulting display at 15:33 (and 45 seconds) would be�

Reading the Date from the calculator
The following command sequence will display the current date

The resulting display on Thursday the 5
th
 April 2012 would be�

Observe that if you had fixed the display to 4 digits, the year would be truncated.

h X.FCN D DATE XEQ

h X.FCN T TIME XEQ

h MODE S SETDAT XEQ

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 38 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

38

The Automatic Memory Stack

The automatic storage of intermediate results is the key to understanding how

reverse polish notation works. The heart of this calculator is its stack. Master the

stack, and you will master the machine.

Initial Display
Numbers are stored and worked on in machine registers. The displayed X register

(which is the only easily visible register) is actually one of four registers which

collectively make up the stack. These registers are known as X, Y, Z and T. Any

number (no matter what size) can be contained in any one of these four

registers.

Registers are stacked one on top of the other, with the displayed X register at the

bottom.

Note
The following notes are based on the description used in the manual supplied and written by

Hewlett-Packard and entitled �Solving problems with your Hewlett-Packard calculator�

supplied way back in 1978 when a still working and much loved LED HP 32E calculator was

originally purchased.

A great many HP calculators make use of a four register stack (using names X, Y, Z and T).

However, the WP 34s has a configuration option in the mode catalogue (see SSIZE8 and its

complement SSIZE4) which allows the stack to be doubled in size (X, Y, Z, T, A, B, C and D).

The two stack sizes work identically except there is more room for intermediate results with

an 8 level stack. Assume for the sake of this discussion that the WP 34S is configured to use

a four level register stack which in practice is usually more than adequate for even very

involved tasks.

T (top) 

Z 

Y 

X 

Register Contents

The X register is always displayed

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 39 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

39

Stack control - manipulation
There are a few key functions that you can use to control where things are on the

stack. For example the roll up, and roll down keys, and also the X exchange Y

key. Let us now look at each in turn.

Roll Down (and Roll Up) Key
To see how the roll down key works, load the stack with the numbers 1 through 4

by pressing.

The numbers will now be loaded into the stack and its contents will look like this

Each time the roll down key is pressed, the stack contents will shift downwards

one register. By pressing roll down, the last number keyed in (in this case 1) will

be rotated into the T register.

T (top) 

Z 

Y 

X 

Register Contents

4 ENTER 3 ENTER 2 ENTER 1

Primary function for

this key is to roll the

stack down

Note that a secondary

function (green shift)

is to roll the stack up.

Primary function for

this key is to exchange

the contents of the X

and Y registers on the

stack

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 40 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

40

Pressing for the first time will result in the following (note how the X

register is written into the T register

Pressing for a second time will result in the following

Pressing for a third time will result in the following

And pressing for a fourth time will return to the starting point

Roll up () works the same way, but just in reverse (note it is a secondary

function, and shown with a green colour � so you must prefix it by pressing the

green �h� key). You can use roll to review the contents of the stack. Just press

each roll (up or down) respectively 4 times to return the contents to their original

registers.

T (top) 

Z 

Y 

X 

Register Contents

T (top) 

Z 

Y 

X 

Register Contents

T (top) 

Z 

Y 

X 

Register Contents

T (top) 

Z 

Y 

X 

Register Contents

Note

Don�t use Roll immediately after using ENTER, or CLx.

You�ll understand the reason why shortly.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 41 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

41

Exchanging X and Y

The key simply swaps the contents of the X and the Y register.

With the data in the previous example, clicking the X exchange Y key will change

the numbers in the X and Y registers to

Pressing again returns the stack to its original positions.

T (top) 

Z 

Y 

X 

Register Contents

T (top) 

Z 

Y 

X 

Register Contents

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 42 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

42

Clearing the Stack
If you wish to clear the entire stack � you can do it in one of two ways. You could

for example manually overwrite each stack register with zero as follows

Or you could open the P.FCN (programming function catalogue) and use the

CLSTK (clear stack) command. When the catalogue is open press the �C� key to

quickly jump to all commands starting with the letter �C�, and then use either the

scroll up, or scroll down keys to locate the CLSTK command.

The ENTER Key
Assume that the stack is now cleared to zero in every register

When a number is typed into the calculator, the contents are placed into the

displayed X register. Key in the value 178.4217, and the stack registers will look

as follows

To key in a second number, you must first separate the digits of the first number

(178.4217) from the digits of the second. One way to separate numbers is to

press the ENTER key.

Press the key now and the register contents will change as

follows:-

Pressing ENTER causes the numbers in the displayed X register to be copied into

the Y register. Similarly, numbers in the Y and Z registers have both been copied

into the Z and T registers and whatever number was stored in T has been lost off

the top of the stack. This chain of events is known as stack �lift�

T (top) 

Z 

Y 

X 

Register Contents

T (top) 

Z 

Y 

X 

Register Contents

h P.FCN C CLSTK XEQ

0 ENTER ENTER ENTER

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 43 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

43

After pressing ENTER the X register is then effectively prepared for a new number

� and whatever is typed by the user simply overwrites the current contents of the

displayed X register.

For example � now key in the value 256.17. The contents of the registers will

change to�

Note that at this point, the CLx key () replaces any typed numbers with

zero � which means we can remove errors. Imagine we meant to type in 128.17

instead of 256.17. Then click CLx, and the registers will change to

Now type 128.17 and the registers become

T (top) 

Z 

Y 

X 

Register Contents

T (top) 

Z 

Y 

X 

Register Contents

T (top) 

Z 

Y 

X 

Register Contents

Note
Numbers already in the stack don�t move when a new number is typed in directly after

clicking ENTER or CLx. However, numbers in the stack DO move up when a new number is

typed in directly after the Roll key is used. This is why we earlier warned not to review the

contents of the stack with roll directly after pressing ENTER or CLx

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 44 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

44

Stack Arithmetic
Assume that the stack is now fully cleared to zero.

The calculator performs arithmetic in much the same way you would if you were

using pencil and paper. Imagine you wished to add the two numbers 24 and 31.

You would use the following sequence to enter the numbers

The stack would now look as follows

With the two values positioned on the stack vertically, we can then add by

pressing the Add (+) button.

So for example to add 24 and 31

Keystrokes Display

24 

ENTER 

31 

+ 

Subtract 31 from 24

Keystrokes Display

24 

ENTER 

31 

- 

Multiply 24 by 31

Keystrokes Display

24 

ENTER 

31 

X 

Divide 24 by 31

Note
This is a general rule with no exceptions. You first position both numbers in the stack. You

then execute the operation (for example add, subtract, multiply, divide) by pressing the

function key.

T (top) 

Z 

Y 

X 

Register Contents

24 ENTER 31

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 45 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

45

Keystrokes Display

24 

ENTER 

31 

÷ 

Raise 24 to the power of 31

Keystrokes Display

24 

ENTER 

31 

y
X
 

The result of raising Y to the power X above is: 6.1171 x 10
42

Note that the y
X
 function is available as a secondary function on the 9 key (using

the yellow f shift), or if no programs have been created that use the label �C� it

will be assigned as a primary function on the top row �C� key

Chain Arithmetic
In each calculation performed above, numbers were manually positioned in the

stack using the ENTER key. The stack itself is organised so that positioning is

done automatically � specifically so that intermediate results are in an ideal

position.

Every number that results from a calculation in the stack is �lifted� automatically

when a new number is keyed into the calculator. The stack �knows� that after it

completes a calculation, any new digits keyed in are part of a new number.

The stack also does the reverse. It �drops� automatically when you perform an

operation (for example ADD takes two values in X and Y, and leaves one result

and so the stack drops).

To see this in action consider the calculation (16+30+11+17). We will tackle this

by placing all four values on the stack at the start and then execute each of the

three add operations. The full sequence would be:-

Note
When raising y

X
 it can help to remember that Y and X register names map one-to-one to this

function.

Given you will enter two values � the first entered will end up in the Y register due to stack

lift. The second value will be in the X register when you invoke the y
X
 function

16 ENTER 30 ENTER 11 ENTER 17 + + +

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 46 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

46

Let us now look at how each of these steps alters the stack

16 Stack Contents

T 

Z 

Y 

X (display) 

16 is typed into the display register

ENTER Stack Contents

T 

Z 

Y 

X (display) 

The stack is lifted and so 16 is copied into Y

30 Stack Contents

T 

Z 

Y 

X (display) 

30 is typed into the display register. It overwrites the 16

ENTER Stack Contents

T 

Z 

Y 

X (display) 

The stack is lifted and 30 is copied into Y which means

that the value that was in Y is now moved up to Z.

Similarly the value in Z is moved to T

11 Stack Contents

T 

Z 

Y 

X (display) 

11 is typed into the display register. It overwrites X

ENTER Stack Contents

T 

Z 

Y 

X (display) 

The stack is lifted and 11 is copied into the Y register. The

old contents of Y moves to Z. The old contents of Z moves

to T. The old content of T is lost.

Cont�

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 47 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

47

�Cont

17 Stack Contents

T 

Z 

Y 

X (display) 

17 is typed into the display register. It overwrites X.

+ Stack Contents

T 

Z 

Y 

X (display) 

Add is a two value function. So, when + is clicked, the

values of 17 and 11 are added together and the stack is

dropped one time. 16 Drops from T into Z (nothing drops

into T and so T holds its original value � a feature that is

useful. See constant arithmetic). Note that the values 30

and 28 are now ready for whatever the next operation

might be (in this case add)

+ Stack Contents

T 

Z 

Y 

X (display) 

30 and 28 are added together. The stack drops again.

Now 16 and 58 are ready for the next operation.

+ Stack Contents

T 

Z 

Y 

X (display) 

16 and 58 are now added together for the final answer.

The stack continues to drop.

Exactly the same dropping action occurs with any command such as subtraction,

multiplication and division. Any two-value-function will take inputs from the X and

Y register and the stack will be dropped as they are taken. The function will then

perform its particular operation and leaves its result in the visible X register.

This automatic stack lift and stack drop affords great advantages because

intermediate results are easily retained and positioned in just the right place

during long calculations.

You may have noticed that as the stack was dropped and everything moved

down, the T register (at the top of the stack) didn�t change. The top of the stack

isn�t altered by a stack drop.

This is a feature which can be used for constant arithmetic

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 48 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

48

Constant Arithmetic
Whenever the stack drops (ie: when a two value operation occurs) the number in

the T register drops into the Z register, but note that the T register remains

unchanged. In the above example, after each stack drop the T register continued

to hold the value 16.

Consider the following example where we can use this feature.

Keystrokes Display

1.172 

ENTER 

ENTER 

ENTER 

1000 

X 

X 

X 

X 

X 

X 

When X is clicked the first time, the calculator computes 1.172 x 1000. The result

1172.0000 is displayed in the X register and a new copy of the growth factor

drops into the Y register. Since a new copy of the growth factor is duplicated into

the T register each time the stack drops, there is no need to manually key in the

value.

Note that performing two-value functions such as multiply causes the number in

the T register to be duplicated each time the stack drops.

By contrast the roll keys (explained above) cannot perform this function. These

functions rotate the contents of the stack registers, but do not rewrite any

number. They merely shift numbers that are already in the stack.

There is a mosquito whose population

increases by 17.2% each day under certain

conditions.

If a naturalist starts a sample population of

1000, what will be the population at the end of

each day over six consecutive days?

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 49 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

49

Order of Execution
When solving a problem like this one

You must first decide where to start before pressing any keys. The rule of thumb

is always to start at the innermost set of parenthesis and work outward. In this

case, an experienced RPN eye will probably attempt to clear the top line first,

then the bottom line of the right hand side fraction and then finally multiply the

lot by 5 either with a 5 that was entered on the stack right at the start, or at the

end. Personally I would write the 5 at the start � but that�s just me.

Keystrokes Display Comment

5 

ENTER  Load the left hand side multiplier onto the

stack. We will hold this on the stack for use

right at the end of the calculation. It nicely

demonstrates why the stack is such an asset

in long calculations.

3 

ENTER 

4 

/  This value is our first intermediate result

5 

ENTER 

2 

/  We can now subtract this value from our

previous intermediate result leaving -1.75

-  This is our next intermediate result

4 

ENTER 

3 

X  We can now add this value to our previous

intermediate result leaving 10.25 � which

clears our top line and which we now hold as

an intermediate result

+ 

3 

ENTER 

.213 

X  We can now divide this into the previous

intermediate result for the top line

÷ 

X  Remember we loaded 5 onto the stack right at

the start. We can now multiply the value of

the right hand side of the equation with that

value to form the final answer of 80.2034

((3/4) � (5/2) + (4x3))

(3 x .213)

5 x

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 50 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

50

LAST X
In addition to the four stack registers that automatically store intermediate

results, the WP 34S calculator also contains a useful and separate automatic

register called the last X register. This register preserves the value that was last

displayed in the X register before the performance of a function.

The WP 34S maps the last X register to register �L�. You can therefore type RCL

�L� (where the letter L is a secondary function of key EEX) to place the last X

value back into the X register.

RCL �L� is exactly the same as executing �LST X� on other HP calculators. The last

X feature makes it easy to recover from keystroke mistakes such as pressing Add

when you meant multiply.

For example: Divide 15 by 2.199 after you have divided in error by 3.199

Keystrokes Display Comment

15 

ENTER 

3.199  Accidentally type in 3.199 when in fact you

meant to type in 2.199

/  Oops � we�ve now divided with the wrong

value.

So we need to cancel this out. First recover

the LAST X value � which is in register L on

the WP 34S. Note that the �L� ASCII character

is located on the �EEX� key

RCL �L�  As we divided originally, do the opposite to

cancel

X 

2.199  Enter the correct value

/  and arrive at the final result

Note
In days of old, HP calculators had a dedicated LST X key on the keyboard. You simply

pressed that key to place the contents of the last X register into the X register. Alas, you

won�t find that key on a WP 34S but you will find something nearly as good�

RCL L

�L� is obtained by

pressing the EEX key

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 51 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

51

Another time when LAST X can be useful is when a single value appears in a

calculation more than once. Consider the following calculation:-

Keystrokes Display Comment

8.1142 

ENTER 

9.18368176 

+ 

RCL �L�  Use the LAST X function to retrieve the long

number for a second time.

/ 

Complex domain LAST X
When working in the complex domain the WP 34S has a last X equivalent. The

calculator employs two registers (I for the imaginary part, and L for the real

part).

Obtaining the complex last X involves the following key strokes

The screen display will confirm that a complex result is being shown by placing a

C in the top left corner.

RCL L CPX

8.1142 + 9.18368176

9.18368176

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 52 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

52

Memory Organisation
The WP 34S contains 2KB of non volatile RAM (memory that retains data when

the device is switched off) organised as four distinct sectors.

Starting from the very top of memory and working down we have�

1. Status and configuration data � a small immovable block typically 50 to

100 bytes containing status and calculator mode data along with the

contents of the alpha register and a set of 14 bytes used to hold 112 (ie:

14x8) global user flags. The user has no direct access to this memory, and

must use assorted calculator commands to read/write to this area.

2. Global registers (ie: holding the general purpose registers accessed for

example by STO and RCL, and the RPN stack (X,Y,Z and T for the four

level stack, and the additional A, B, C and D registers when the device is

configured with an 8 level stack).

3. Registers used for cumulative statistics � namely the sigma registers.

Observe that these are quite separate from the normal general purpose

registers (unlike many HP calculators where these two uses are shared).

Splitting these registers into a separate block provides safeguards in the

form of encapsulation and also assist precision.

4. The subroutine return address stack (SBR) used to hold subroutine return

addresses (note this stack has nothing to do with the normal 4 or 8 level

RPN stack and merely deals with the program addresses pushed and

popped off the stack during normal program execution calls and returns).

Memory can be traded between program steps, general purpose registers and the

flags but it is important to realise that the calculator will never provide a full

complement of program steps AND registers AND flags all at the same time.

One must therefore trade, based on the intended application.

Note
A complete copy of non-volatile RAM can be written to the semi-permanent flash memory

using the SAVE (or the ON+STO) commands

Note
The status and configuration area of memory is subject to change based on features offered

in future revisions of the calculator firmware.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 53 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

53

Global registers
Global registers are placed close to the top of memory and split into two parts.

The first part holds the registers that can be accessed via the normal STO and

RCL commands familiar to HP users of old. By default a total of 100 registers are

allocated by the calculator for this block and the user would use 00 to 99 to

address each individual register.

The second part of this area is fixed, and holds the special named registers used

to manage the RPN stack and which are individually named as X, Y, Z, T, A, B, C,

D, I, L, J and K. Keep in mind that you generally use the alpha name to access

each of these registers.

The two blocks combine (by default) to give a total of 112 registers as follows:-

The RPN stack (ie: the 12 named registers shown in light blue above) are fixed

and cannot be altered. The remaining register numbers are configurable. By

default 100 registers are assigned (00 to 99) however the �REGS� command

located in the MODE catalogue can be used to reduce the assigned number

anywhere from 99 right down to zero if no registers were required.

The �REGS?� command in the TEST catalogue can be used to determine the

current assignment.

Eight level stack

Four level stack

R00 R99 X Y Z T A B C D I L J K

Register L usually holds LAST X (see above

notes). However, within the complex domain

LAST X uses register I for the imaginary part

and register L for the real part.

Register J (and sometimes register K) are

used when calculating probability

distributions

Special �named� registers General purpose registers

By default the calculator assigns 100

registers to this group � which are then

accessed by commands such as STO or

RCL using the two digit numeric address

00 to 99.

The �REGS?� command (in the TEST

catalogue) can be used to find out the

current number of registers assigned) and

the command �REGS� (in the MODE

catalogue) can be used to adjust the

assignment anywhere from 0 through to

99 registers.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 54 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

54

Global Register Access � Direct and Indirect
An important concept to understand is that the assigned block of general

registers described above (100 registers by default addressed as 00 to 99) can be

addressed either directly or indirectly.

A worked example will help make this clear.

First we will use direct addressing to write the value 24 into register 31

We will then read the register 31 back after first clearing the X register

At which point the display will show

Next we will use indirect addressing.

In this mode we involve two registers, where the first is used to hold the address

of the 2
nd

. We will use register 15 to hold the address of register 2, and we will

then indirectly update register 2.

First prime register 15 so that it holds the target register number (in this case 2)

2 STO 15

RCL h CLx 31

24 STO 31

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 55 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

55

Next, indirectly write the value of PI to register 2 via register 15

If you now recall register 2, you will find the value 3.1416 stored, whereas

register 15 will still contain the unchanged value 2.

Recall register 2 (RCL 02) Recall register 15 (RCL 15)

Indirect addressing is a very powerful mechanism that can be used to implement

smart lookup tables and dynamic data arrays. It is also sometimes the only way

certain registers in the WP 34S can be accessed when the register number

exceeds 99.

Indirect addressing has generally all sorts of interesting applications.

Global Register Access � Out Of Range Error
Keeping in mind that the number of assigned registers can be changed via the

REGS command (in the MODE catalogue) then assume for arguments sake that

the REGS command has been used to assign a total of 32 general purpose

registers (00 to 31 instead of the default 00 to 99).

In this case the user will be able to either directly AND/OR indirectly access up to

register 31 and no further.

The keyboard user interface will actively prevent any attempt to access registers

32 to 99, and any program line attempting the same thing will raise an Out Of

Range exception error.

Cumulative Summation Registers � Sigma Data
The memory needed for cumulative statistics is allocated separately from the

general registers. This separation safeguards one data set from the other (and is

helpful in terms of the precision of the device).

The ONLY way to update the summation registers is via the + and - keys. The

data stored in this area of memory is then evaluated and accessed by specific

functions and only those functions. This data is not available via STO or RCL.

STO 15 h π

This key (top row, second

from the right) is used to

invoke indirect addressing

mode.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 56 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

56

The first time + is used, a block of 14 summation registers are created (70

words) in between the general purpose (and stack) registers and the subroutine

return stack.

After the CL, CLALL or RESET functions are invoked, the memory allocated to

the summation registers will be released (a process that occurs entirely

transparently to the user and programs running on the calculator).

On the calculator (not the computer simulation) you can tell as/when the

allocation of sigma data registers has been made by viewing the STATUS

command. Before using the + sigma function use the following command

sequence.

With the default allocation of 100 general purpose registers the display will show

Press the EXIT key to cancel the STATUS display.

Note
As you can imagine, it is possible that a configuration of memory previously set in the

calculator could prevent this allocation of sigma data registers being made until room is

made first.

h STATUS

Use the scroll down

arrow one time to

open the 2
nd

 page of

the status display

which shows the

number of registers

allocated

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 57 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

57

Next, use the following key strokes to enter an X, Y value (3, 8) into Sigma

And then reopen the STATUS command and select the 2
nd

 page.

With the default allocation of 100 general purpose registers, and our first sigma

point input to the calculator, the display will now show a + symbol next to the

�Regs� word in the display.

(Note that this does not work on the WP 34S computer simulator)

Press the EXIT key to cancel the STATUS display.

Program Steps & Subroutine Return Stack
The maximum number of program steps is 926, ranging from step 000 to step

925.

The subroutine return stack is used to hold return addresses that are pushed onto

the stack when a function is called, and popped off the stack when the function

executes the return (RTN) command. There is no command to set the size of this

area, as it simply grows down from the top most program step currently stored.

The subroutine return stack is also used to hold local variables and flags

described next.

Local Data
A mechanism exists for creating a block of data from the overall memory pool

that is local to a program. Please refer to the local data (variables and flags

topics) in the programming section of this guide for more details.

h STATUS

h + 8 ENTER 3
Located

on the + key

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 58 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

58

Clearing memory to make space
If you need more memory space � for example if you run out of program memory

then you have the following options.

1. You can reduce the number of global registers (normally 100 are assigned)

using the REGS command. Each register is roughly equivalent to four

program steps

2. You can move programs to flash memory and then clear the respective

sections in RAM. A set of four program steps is roughly equivalent to a

single register.

3. You can release the sigma registers (assuming they have been allocated)

by invoking the CL∑ command.

Use the STATUS command to monitor progress.

Backing up the calculator memory - introduction

The WP 34S provides a mechanism to create and retrieve a backup of all

calculator memory including program storage, the numbered registers, the sigma

registers and calculator state.

The calculator is capable of storing one backup in flash ram. When the machine is

first commissioned, a new backup is created in this area that is cleared of all

data. A point to note here is that if the calculator is ever hardware reset (see

section at the end of this guide) the contents of the flash RAM backup will

automatically be restored into the calculator main memory. So - if the backup is

blank, then the calculator will be cleared after the reset.

Managing backups requires the use of a small collection of commands in the

programming function catalogue (P.FCN) � which can be summarised as first

allowing the user to save everything and second retrieving part or all of the

previously saved data.

The following table shows the commands available in the P.FCN catalogue which

include SAVE, LOAD, LOADP, LOADR, LOADSS and the LOAD∑ command.

Command Description

Creates a full backup of main memory into flash

RAM. This command saves all user program space,

all registers and the current settings and state of the

calculator. The command will overwrite any

previously created backup. The display will show

�Saved� when the command is executed.

Restores a previously created backup of main

memory from flash RAM. This command overwrites

the existing program space and all registers and the

current settings and state of the calculator with

whatever was in the backup data. LOAD is

functionally equivalent to executing LOADP, LOADR,

LOADSS and LOAD∑. The display will show

�Restored� when the command is executed.

Note
The backup will remain blank until after you create your first backup using some

combination of the commands shown below. Therefore you should get into the habit of

making regular calculator backups as you add programs and make changes � all the more so

given it is extremely easy to do.

h P.FCN XEQ LOAD S

h P.FCN XEQ SAVE S

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 59 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

59

Restores the complete program memory from a

previously created backup in flash RAM and

appends that to the existing programs in RAM (note

that this will only work if there is enough program

memory space to cope)

Restores numbered general purpose registers from a

previously created backup in flash RAM. Note that

lettered registers (X,Y,Z,T,A,B,C,D,I,L,J and K) are

not restored. The number of registers copied is the

minimum of the registers held in the backup and

RAM at execution time.

Restores the system state from the previously

created backup in flash RAM.

Restores the summation registers from a previously

created backup in flash RAM. Note an exception will

be raised if no backup exists.

Backing up the calculator memory � hot key shortcut

You can use SAVE and LOAD as shown above. However, the WP 34S provides an

elegant shortcut key combination which can be used to directly invoke either the

SAVE or the LOAD without having to navigate a catalogue.

Creating a new backup using ON & STO
To create a new backup (which will overwrite the existing backup) simply

following the exact sequence shown below

1. Press and hold the ON key (ie: the EXIT key) � keep this held down

2. Press and release STO (keep the ON key pressed)

The display will then display an �Are you sure� style challenge with the words�

Backup?

to FLASH

3. Press and release STO if you wish to proceed with creating the backup, or

simply release the ON key to cancel.

4. Release the ON key

Restoring a backup using ON & RCL
To restore a previously created backup follow the exact sequence below

1. Press and hold the ON key (ie: the EXIT key) � keep this held down

2. Press and release RCL (keep the ON key pressed)

The display will then display an �Are you sure� style challenge with the words�

Restore?

FLASH

3. Press and release RCL a second time if you wish to proceed with the

restoration, or simply release the ON key to cancel.

4. Release the ON key

h P.FCN XEQ LOADSS S

h P.FCN XEQ LOAD∑ S

h P.FCN XEQ LOADR S

h P.FCN XEQ LOADP S

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 60 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

60

How STO (+,-,/,x) and RCL (+,-,/,x) access items in memory
With the above discussion in mind you might be wondering how one might store

(STO) or recall (RCL) the value of a specially named RPN stack register (for

example any of the 12 specially named registers: X, Y, Z, T, A, B, C, D, I, L, J and

K). Generally if you execute a command such as STO or RCL the calculator will

pause displaying the command name with an underscore prompt. What you type

next controls precisely which command is invoked, and what argument is used as

the input. For the notes below assume the following...

Assumptions List

1. Register 2 contains 14, Register 5 contains 4, Register 14 contains 8

2. 16 Local data registers have been allocated by the LocR command (see

above notes)

3. X register contains 3.

Let us first consider using the RCLx function (which recalls register n and then

multiplies that value by the existing X register � leaving the product in X).

Remember as we�ve said earlier, functions assigned to the keyboard generally

never appear in any catalogue, so to invoke the RCLx command we actually need

to press RCL immediately followed by the multiply key (the same idea applies to

RCL+, RCL-, RCL/ and all the similar STO functions).

Function 1

st
 Key 2

nd
 Key 3

rd
 Key Comment

RCL×  ENTER Recalls the value of register 2 giving (3x14)=42 in X.

RCL×   Recalls the value of register 14 giving (8x14)=24 in X

RCL×    Indirectly recalls the contents of register 14 (because register 2

contains the value 14) and multiplies that by the contents of X

(ie: 3). As register 14 contains 8, the result is 24.

RCL× .   Recalls the value of local data register 12 using special dot

notation. This can only be used when local data registers have

been allocated by the LocR command

RCL× . X Pressing the dot key twice (remember the �X� letter is on the dot

key) is an optimisation that selects the X register as the

argument. Note this is exactly the same as RCLx followed by

ENTER and then the letter �X�. When the X register contains 4,

this command sequence results in X holding 16.

RCL× ENTER

Z

RCL× ENTER

T

 Recalls and multiplies the contents of either the Z register or the

T (top of stack) register with the X register. The �enter� key

switches the calculator into temporary alpha mode allowing the

entry of the �T� or �Z� letter.

The �Z� letter is found on the addition key, while �T� is found on

the multiplication key.

RCL× Y, A, B,

C, D, I,

L, J and

K

 If the register name isn�t either �X�, �Z� or �T� then it can be

typed immediately as the first key.

When it comes to STO or RCL, the registers �T�, �Z� and �X� present a specific

challenge given the letter �T� sits on the multiplication key, �Z� on addition and

�X� on the dot key. Without some kind of extra key sequence the calculator would

face a potentially ambiguous key sequence. For example, pressing the �X� letter

key directly after RCLx would actually indicate an operation on a local register

given the letter �X� sits on the dot key). The chart shows that you would instead

press the dot key twice to select register �X� as the argument, and use ENTER as

a prefix before either �T� or �Z�.

Alternatively you could use ANY register name as follows

RCLx ENTER X, Y, Z,

T, A, B,

C, D, I, L,

J and K

 An alternative and very easy mechanism to remember is if you

want to access any register as an argument to STO or RCL then

simply press the ENTER key before pressing ANY register letter

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 61 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

61

STO and RCL register access - summary
For STO and RCL remember the following:-

1. In order to refer to registers Y, A, B, C, D, I, L, J or K (ie: every register

OTHER than �X�, �T� and �Z�) simply type the register letter immediately

after STO or RCL.

2. To refer to registers �T� or �Z� (which are ambiguous because they sit on

the math operations multiply and add) prefix the register letter with the

ENTER key.

3. To refer to register �X� simply press the dot key twice.

How tests such as x=? access items in memory
Consider the group of test commands. Tests �x=?� and �x?� are secondary

functions of the digit 1 key. Additional tests can be found in the TEST catalogue

and include: x?, x?, x=+0, x=-0, x? (ie: approximate equality), x? and x?.

The tests in this group only permit an immediate argument of either 0 or 1. So

for example a test of x2 isn�t allowed. This means that a test against any value

other than 0 or 1 must be carried out using a register (note this is a reasonable

limit given the simplicity of embedding a zero or 1 into a command

opcode/operand compared to the difficulty of trying to do the same thing for any

possible numeric value). The following chart shows the available options.

Func 1

st
 Key 2

nd
 Key 3

rd
 Key Comment

X=?  Tests the value of X against the immediate value 0, and returns a

true or false based on equality

X=?  Tests the value of X against the immediate value 1, and returns a

true or false based on equality

X=? Any digit

>1. In

this case

assume 2

 Tests the value of X against register (in this case) 23 and returns a

true or false based on equality

X=?    Indirectly tests the contents of register 14 (because register 2

contains the value 14 (see assumptions list above) and returns a

true or false based on equality

X=? .   Tests the value of the local data register 12 using special dot

notation and returns a true or false based on equality. This can only

be used when local data registers have been allocated by the LocR

command. For more details on this feature (and dot notation)

refer to the local data section in programming.

X=? . X This special optimisation allows you to press the dot key twice to

effectively test X against itself. Remember the �X� letter sits on the

dot key. This type of function was useful in the past as a test used to

determine if X was not a number (NaN) however there are specific

NaN tests available in later revisions of the firmware and so this

function is now much less relevant

X=? Y, Z, T, A,

B, C, D, I,

L, J and K

 So long as the register name isn�t X, you can type the letter

immediately following the test.

Note
The �approximate equality� test above is worthy of note. The result will be true when the

rounded value of both arguments is equal. In this case the term �round� refers to the

calculator rounding using the current display format (FIX, ENG or SCI) or when dealing with

fractions rounded using the current denominator.

Note
If you want to simplify this even further then press ENTER before typing ANY register name

(which will work for any of the 12 stack registers).

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 62 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

62

As in the case of RCL or STO, as soon as a test is invoked, the calculator opens in

temporary alpha mode. Unlike RCL and STO (which has the potential conflict with

the addition key (�Z�) and the multiplication key (�T�), tests allow you to

immediately type any register name including �Z� and �T� but still not �X��

Alas, for RCL, STO and for the test functions, the �X� key has the same ambiguity

problem given it sits on the dot key (which is used to indicate a local data address

allocated by the LocR catalogue function).

In order to select the �X� register as an argument to a test you again press the

dot key twice.

Note that test functions are similar to RCL and STO in the sense that you can also

proceed register names with ENTER although this doesn�t work with the X

register. That said, there won�t be many instances where you would want to use

X as a test function argument � so it�s arguably no big loss.

X=? ENTER Y, Z, T,

A, B, C,

D, I, L, J

and K

 Alternatively, you can press ENTER to force the WP 34S into

temporary alpha mode � which works for any register other than X.

Tests x=? register access summary
For tests remember the following:-

1. In order to refer to registers Y, Z, T, A, B, C, D, I, L, J or K then simply

type the letter immediately after STO or RCL.

2. To refer to register �X� simply press the dot key twice.

How simpler commands such as FIX access items in memory
The �FIX� command used to fix the display to a specific number of digits is worth

reviewing because the number of input option combinations are fewer.

Func 1

st
 Key 2

nd
 Key 3

rd
 Key Comment

FIX  to  Fixes the display to 0 to 9 decimal places

FIX    Fixes the display to 4 decimal places using indirect addressing to

access register 5 (which contains the value 4).

With the FIX command, you cannot for example select a register as an argument.

However, there is nothing to stop you employing indirect addressing to set the

number of digits required as the second line in the table shows.

Note
If you want to simplify this even further then press ENTER before typing any register name

other than X � and while this simplification won�t work for register �X� it doesn�t matter

overly given it is quite unlikely you�ll ever need to use X as an argument for a test.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 63 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

63

Temporary Alpha Layout
When the calculator enables this mode, the following alpha, numeric keys can be

pressed. Note that in this mode the alpha value becomes the primary value (so

no shifts are required).

Temporary Alpha Keyboard Keys Comment

X, Y, Z, T, A, B, C, D, I, L, J and K Each of these corresponds to the

respective RPN stack register and can

be found on the grey letter next to each

respective key. So for example, T is

found on the multiply button, whereas

X is found on the decimal point button.

Context will decide when each can and

cannot be used as described in the

above notes.

The important letters to keep in mind

are �T�, �Z� and �X� (see above notes).

 The normal keyboard digits.

 The right arrow � which is used when

employing indirect addressing.

ENTER Switches the mode on or off

 Backspace to clear entry characters

EXIT Cancel the current command

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 64 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

64

Part 3

WP 34S

Integer Modes

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 65 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

65

Integer modes - using alternate bases
If you are familiar with HP calculators of old you may have heard of or even used

the HP-16C calculator. This constant memory calculator was aimed at

programmers, and came with a rich set of integer and logic operations across

different bases. Number representation in the WP 34S is as versatile as the HP

16C with a similar range of functions available to the user.

By default, the calculator starts in floating point mode (referred to as the DECM

mode of operation). However, the calculator can easily be switched into integer

mode, and in any base from 2 to 16. After you switch the calculator into integer

mode, you can revert back to floating point mode anytime by using the key

sequence

Switches to common integer bases such as binary (base 2), octal (base 8),

decimal (base 10) and hexadecimal (base 16) are available directly on the

keyboard

Note
Some of the integer commands used in this section are located in catalogues such as X.FCN -

an example being the binary bit shift command SL (shift left) explained in subsequent notes.

These commands only apply to integer modes, and so only appear in the catalogue command

list when the calculator is switched into integer mode. In floating point mode, you won�t find

an SL command.

Note
Please note that some of the following sections are based on the HP-16C manual but

rewritten to cope with this rather different catalogue based calculator.

H.d f

Secondary

functions which

switches to

binary base 2

Secondary

functions which

switches to

octal base 8

Secondary

functions which

switches to

decimal integer

base 10

Secondary

functions which

switches to

hexadecimal

base 16

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 66 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

66

Switching to other bases (3,4,5,6,7,9,11,12,13,14,15) can be achieved by

invoking the BASE command in the MODE catalogue. Let�s demonstrate two

methods now to switch to and from hexadecimal. First we will use the BASE

command.

The display will then show

This display immediately confirms that the calculator is in integer mode by

displaying four digits at the top left. �2c� indicates that the calculator is running in

2�s complement mode, and the 64 indicates that the calculator is using 64 bits of

precision (both are normal calculator defaults).

Before we leave integer mode and revert back to floating point, enter the

hexadecimal number FF by pressing the F key twice (�F� is the alpha function for

the CPX key at the top right of the keyboard). FF in hex is 255 in decimal

notation. Hit enter and swap back to floating point mode using the following

keystrokes�

�you will note that the calculator converts (if it can) the contents of the X

register to a floating point value and will display�

Note
Hexadecimal numbers use numeric digits 0 to 9 and the alpha characters A, B, C, D, E and F

(to represent the decimal values 10 through 15). When the calculator switches to base 16, it

automatically interprets the top row of calculator keys as A to F during number entry

H.d f ENTER

h MODE B BASE XEQ 16

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 67 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

67

Switching to one of the four common integer bases (namely binary base 2, octal

base 8, decimal base 10 and hexadecimal base 16) is even easier � because

shortcuts can be found on the keyboard. Switching to hexadecimal requires the

following keystrokes (note that �16� is the secondary function for the EEX key)

And again, note how the calculator will attempt to convert the contents of the X

register into a number suited to the new hexadecimal base.

Let us now have a look at some of the functions we will use in order to control the

base and also the arithmetic that can be performed in these modes. Open the

MODE catalogue and position yourself on the commands starting with B�

If you scroll through the MODE catalogue list using the scroll keys, you should be

able to find each of the following commands.

BASE Switches to a new base for integer calculations where 2 <= n <= 16.

Popular bases (hex, decimal, octal and binary) are available only via

the secondary links on the keyboard (see image above).

1COMPL Sets the calculator into 1�s complement mode

2COMPL Sets the calculator into 2�s complement mode

SIGNMT Sets the calculator into Sign & Mantissa mode (not covered in this

guide).

UNSIGN Sets the calculator into unsigned mode of operation

WSIZE Defines the number of bits in a full calculator integer mode word. By

default this is 64 bit. Note that the command �WSIZE 0� will set the

maximum word size of 64 bits

A set of complementary �query� functions can also be found in the TEST

catalogue as follows

IBASE? Queries the current base and leaves the result in the X register

INTM? Tests to see if the WP34S is working in integer mode. The value is

returned in the X register

SMODE? Queries the current mode of integer operation as follows:

2 when in 2�s complement mode

1 when in 1�s complement mode

0 when unsigned mode

-1 when sign and mantissa mode

The value is returned in the X register

WSIZE? Queries the number of bits in a calculator word leaving the result in the

X register

g 16

h MODE B

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 68 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

68

Complement and unsigned mode
The WP 34S provides four representation modes when dealing with integer math.

These are known as 1�s complement, 2�s complement, unsigned modes and Sign

and Mantissa mode
*1

.

By default, the calculator uses the 2�s complement mode but can be switched to

any other mode by using the 1COMPL, 2COMPL, UNSIGN or SIGNMT commands

in the MODE catalogue. All examples in the following notes will use 2�s

complement (unless indicated otherwise).

In a binary representation of a number with a sign (-ve or +ve) the most

significant bit serves as the sign bit, 0 for positive, and 1 for negative. Decimal

mode adds a refinement where a negative number is shown with a minus sign.

1�s Complement Mode
The following sequence will switch to 1�s complement mode of operation

Note how the display now shows �1c� at the top left to confirm the switch to 1�s

complement mode. Clear the display (using the back space key).

When you click the [+/-] key (change sign) the calculator takes the 1�s

complement of the contents of the X register which involves complementing or

inverting all bits. Hence the 1�s complement value of zero is FFFFFFFFFFFFFFFF

(remember the calculator is set to use a 64 bit number representation).

The 1�s complement number system allows an equal number of both positive and

negative numbers, but with the ambiguity of having two representations for zero

(0 or -0).

After this key sequence the display will show the following

You may have noticed that this display is actually missing four hex digits (there

should be 16 in a 64 bit representation), and that a new notation involving two

vertical bars (on the top line, to the centre right of the display) has appeared. To

make sense of this display we need to review how the WP 34S displays long

numbers.

*1

 Note that Sign and Mantissa mode are not covered in this guide

h MODE 1 1COMPL XEQ

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 69 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

69

Viewing long number displays � introduction
The display of the long number in the above example highlights a particular

problem for any calculator. In this particular example the WP 34S has the

problem of trying to display 16 digits using a 12 digit LCD display. To do this, it

employs a special display notation involving one or more windows to traverse all

digits of the full number.

The two vertical bars define the limits of the display problem. They confirm, in

this case, that the calculator will display the number using a total of 2 windows

(because there are two vertical lines). As the longer of the two vertical lines is

currently on the right hand side, this means that the current window (1 of 2) is

currently showing the right hand side of the full number (namely the least

significant portion). The shorter left hand vertical line means that the left hand of

the full number (namely the most significant portion) is hidden from view.

We press the left horizontal scroll key to jump to the window holding more

significant bits ◄(or the right horizontal scroll key)► to jump to the window

holding less significant bits.

Note that both scroll keys are secondary functions under the X exchange Y key ie:

In move to the next window � showing the most significant digits use�

◄(f

�1c� confirms the calculator is in

1�s complement mode�

12 of the 16 digits are displayed here with the least

significant nibble shown on the far right

�working with 64 bits of

precision

Two vertical bars indicate that this number

requires a total of two display windows to show.

The long bar (right hand) confirms that the WP

34S is displaying the least significant 12 digits of

the number (in the 1
st
 of 2 windows).

The short bar (left hand) confirms that the most

significant digits window is currently hidden.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 70 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

70

The display will then change as follows:-

You can swap back in order to see the least significant digits by�

Note
Hexadecimal numbers use numeric digits 0 to 9 and the alpha characters A, B, C, D, E and F

(to represent the decimal values 10 through 15). When the calculator switches to base 16, it

automatically interprets the top row of calculator keys as A to F during number entry

g)►

Note how the long bar is now on the left which

means that the display is now showing the

most significant digits.

The short bar on the right means that the least

significant digits are now hidden

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 71 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

71

Viewing very long 64 bit binary numbers
Let us now extend this example to see how the calculator deals with very long

number displays. With the calculator unchanged from above, clear the display

(click the backspace key) and then type in the rather long 48 bit hex number

123456789ABC


Click enter, and switch to binary base 2 either by using the shortcut key sequence

below (or by opening the MODE catalogue, scrolling to the BASE command,

executing it and then entering the value 2).

The display will switch to base 2, and will show the following

With this number the display has to cope with the problem of displaying 45 bits of

binary (once all the leading zeros have been removed) on a 12 character display.

Just as in the above hex example it breaks the full number down into the smallest

number of display windows it can � where in this case each window consists of 12

bits.

The 6 vertical lines confirm that there will be 6 windows, and the fact that the

right hand vertical line is the longest means that this particular window above is

showing the least significant 12 bits of the full number.

You will notice that the display deemphasises the most significant 4 bits (using

small characters) because these four bits will appear again in the next window in

the sequence of 6. The �overlap� of four bits is designed to assist readability by

giving the user a hex digit (4 bits) key in common with any two adjacent

windows.

Let us now look at the entire hex number when placed side by side with the six

display windows.

2 f

NB: This is not the digit �2�

It is the secondary function under

the +/- (change sign) key

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 72 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

72

Observe that 4 bits of overlap are always used between each display window when showing binary (see the orange links). This is done to

assist readability. However it can also be exceptionally confusing. (See note regarding the subtle feature of this display below)

0000 0000 0000 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

Most significant byte

Move the calculator display

from window to window using

either of the two horizontal

scroll keys. Scroll left to move

to the most significant end and

scroll right to move to the least

significant end. The scroll keys

are secondary functions under

the X-exchange-Y key



Least significant byte

(1)

(2)

(3)

(4)

(5)

(6)

The most significant bit of the

number will appear in the most

significant position of window (6)

but only after all the leading zero�s

of the number have been

removed.

Note that the command LZON in

the mode catalogue can be used to

enable leading zeros (also see

LZOFF)

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 73 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

73

In the above diagram observe that the most significant zeros are all removed

from the display (just as per any normal number display) depending on the use of

the leading zero switch commands (in the MODE catalogue - see LZOFF, and

LZON). The window displays will only ever show significant digits with the most

significant in this case being located in the high nibble of the 6
th
 byte � and which

is shown in display window (6)

Subtle Feature of this display

There is one subtlety with the binary display mechanism adopted by the WP 34S

that is worthy of note for those readers completely puzzled by the purpose of the

overlapping four bits (as I was).

The display of base 2 binary is actually unique (compared to the display of other

bases on the WP 34S) in the sense that it always displays one byte of 8 bits per

window. If the user simply ignores the deemphasised overlapping four bits, then

each distinct window shows exactly one byte of the full number. In our example

above, if we review each of the six windows, and ignore the deemphasised four

bits we see the following byte values�

Display Window Binary in display window Value in Hex

1  BChex

2  9Ahex

3  78hex

4  56hex

5  34hex

6  12hex

Starting from the most significant byte shown in display window 6 (lowest row)

and reading towards the least significant byte in display window 1 gives the full

number of 123456789ABC � which was off course the hex number we originally

placed in X.

Leading Zero�s ON / OFF switch
This switch only applies when the calculator is working in integer mode.

By default leading zeros are suppressed whenever a number is being displayed.

Leading zero�s can optionally be enabled using the LZON command, or

alternatively disabled via the LZOFF command (both located in the MODE

catalogue) a feature that can be useful when performing binary logic and/or shift

operations on relatively short precision numbers.

The feature becomes more of a hindrance when precision is set to a full 64 bits �

and the X register is cleared. In which case you have to cope with the normal

long viewing window system in order to see 64 bits of zero � ie:

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 74 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

74

2�s Complement Mode
The following sequence will switch to 2�s complement mode of operation

Note how the display now shows �2c� at the top left to confirm the switch to 2�s

complement node. Clear the display (using the back space key).

When you click the [+/-] key (change sign) the calculator takes the 2�s

complement of the contents of the X register by complementing or inverting all

bits and then adding 1. Hence, the 2�s complement of zero is zero.

The 2�s complement number system only has one representation for zero, but it

always has one more negative number in its representation compared to the

number of positive values.

Unsigned Mode
The following sequence will switch to an unsigned mode of operation when the

calculator is working in an integer mode

Note how the display now shows �un� at the top left to confirm the switch to

unsigned mode. Clear the display (using the back space key).

Unsigned mode has no sign bit. All bits in the number hold magnitude information

so that the display representation of an n bit word is 2
n
 and the largest value that

can be represented is 2
n
-1

Changing signs in an unsigned mode doesn�t make any sense. If you press the

[+/-] key in an unsigned mode the calculator will take the 2�s complement of the

value in the X register which will effectively overflow the notation system being

used. Consequently � the �o� annunciator in the display will show.

h MODE U UNSIGN XEQ

h MODE 1 2COMPL XEQ

This may look like a mistake. The �2� key in temporary

alpha mode is actually interpreted as the letter �U� so

pressing 2 will quickly locate all functions in the MODE

catalogue starting with the letter �U� whereas we want to

find �2COMPL�. Using �1� (which isn�t mapped to a letter)

does locate the catalogue function 12H and from there

it�s only a few scroll clicks to locate 2COMPL

Overflow

annunciator

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 75 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

75

Using a word size of 4, the following table illustrates how the various complement

modes affect the decimal representation of all possible values.

Binary 1�s Complement 2�s Complement Unsigned

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Bit wise operations and integer math
Bit wise operations and arithmetic functions can and will result in a carry, and/or

overflow condition � which the WP 34S reports using two flags on the right hand

side of the display.

An example of each is shown below

The carry and overflow flags are directly addressable in the WP 34S, so you can

manipulate them directly using either the set flag (SF) or clear flag (CF)

commands (secondary functions of the scroll down key).

The flag naming conventions on the calculator share the set of special names

used by the stack registers (ie: X, Y, Z, T, A, B, C, D, I, L, J and K) and so carry

has the notation �C� while overflow is designated �B�. Relevant flags here are

named as follows:-

Flag name Description

A Equals flag � when asserted illuminates the �=� annunciator in the display.

B Overflow flag � when the result of a calculation or operation causes a result that

exceeds the number representation.

C Carry / borrow flag. Carry when performing addition, and borrow when dealing with

subtraction. Some shift and rotate operations use this flag in integer mode.

D Danger flag � may be used to allow special exception results for example infinity and

non numeric (NaN) without getting an error (the system reads this flag)

Overflow flag

annunciator

Carry flag

annunciator

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 76 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

76

For example � the following manual key sequence will cause the �=� annunciator

in the display to appear�

and this sequence will remove the equal�s annunciator by clearing the flag�

Consider the following two operations. If we set the display to have 16 bits of

precision, using base 16, 1�s complement and enter the hex value FFFF we get

the following display

If we then add 1 we would expect to generate a carry bit. As a result we see the

following display

Clear the carry flag now using�

Switch to 2�s complement notation with 16 bits of precision. Set the base to 10,

and enter the value 32767 which will result in the following display

C g CF

A g CF

SF f A

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 77 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

77

Now multiply by 2 � which will cause the number system to overflow. The

resulting display is as shown below. Note the overflow flag (small �o� on the far

right)

Clear the overflow flag now using (g, CF B)

Integer arithmetic functions
For the following examples � set the calculator into 2�s complement mode, with

16 bits of precision using base 16 (hexadecimal)

First � set the calculator into 2�s complement mode.

Set 16 bits of precision

Switch into integer mode

You should now see the following display

B g CF

g 16

h MODE W WSIZE XEQ 16

h MODE 1 2COMPL XEQ

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 78 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

78

Addition, Subtraction, Multiplication and Division
These four arithmetic operations can all be performed using integer math

regardless of base. The operation as far as the RPN stack is concerned works

exactly the same way as for floating point (as described in detail above).

The following points are worth keeping in mind.

 Division in integer mode will truncate the fractional part of the quotient.

 Any arithmetic operation on integers except multiplication will set/clear

both the carry flag and the overflow flag. Multiplication will only affect the

overflow flag.

 Multiplication of two n bit values requires a maximum 2n bit result space.

 You can swap bases anytime you please (something the following

examples demonstrate)

Example: Find (5A016) / (1777648) using 2�s complement and 16 bits of

precision. Give the answer in hexadecimal

As we are working in base 16, we can enter the first value easily

Now, because the next number (1777648) is an octal number � swap the base

before entering it into the X register, and then pressing the divide key.

At that point, we have our result � but the current base is octal.

To convert the answer to hex, simply swap back to base 16

g 16

177764 g 8 ÷

ENTER 5 A 0

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 79 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

79

At which point the display will become�

The answer is correctly shown as: FF8816

Addition and Subtraction in 1�s complement mode
In 2�s complement mode, and unsigned mode, the result of an addition or

subtraction is simply the sum or difference between the X and Y register contents.

In 1�s complement notation however, the result of addition is dependant on the

carry flag, and with subtraction on the borrow flag (effectively the same flag).

If a carry out of the most significant bit occurs, then 1 is added to the result. If a

�borrow� into the most significant bit occurs, then 1 is subtracted from the result.

Both cases set the carry flag.

1110

Carry Example

+1110

1100
 + 1

1101

-1

+ (-1)

-210

1100

No Carry Example

+0011

1111

-3

+ 3

-010

0011

Borrow Example

-0100

1111
 - 1

1110

3

-4

-110

0110

No Borrow Example

-0101

0001

6

-5

110

Use 1�s complement mode, with four bits of precision & base 10 for all examples below

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 80 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

80

The carry flag during addition
Regardless of the complement mode, the carry flag annunciator will be set

whenever an operation causes a carry out of the most significant bit of the

representation space. If no such carry occurs, the flag will be cleared.

The carry flag during subtraction
Regardless of the complement mode, the carry flag annunciator will be asserted

whenever a binary subtraction results in a borrow into the most significant bit,

otherwise it will be cleared. In the WP 34S subtraction is NOT computed as the

addition of a negative number � which affects how carry generation occurs.

1010

Carry Set

-1100

1110

-6

- (-4)

-210

0110

Carry cleared

-0001

0101

6

-1

510

Use 2�s complement mode, with four bits of precision & base 10 for both examples below

1010

Carry Set

+1100

0110

-6

+ (-4)

610

0110

Carry cleared

+0001

0111

6

+1

710

Note that in this example the

representation space will be

exceeded by the result and so the

overflow flag will be set as well as

the carry flag

Use 2�s complement mode, with four bits of precision & base 10 for both examples below

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 81 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

81

Overflow � WP 34S flag B
Some arithmetic results that cannot be shown in the current word size and

complement mode cause the overflow flag to assert. In the case of division this

condition will only occur when in 2�s complement mode � specifically when the

largest possible negative number is divided by -1

Example: With a word size of 4 bits using 2�s complement mode, calculate 7 + 6

in base 2, and observe the results of the carry and overflow flags

Set 2�s complement mode

Set 4 bits of precision

Switch into integer mode base 2

Enter the value 111, then type 110, and press + and the display will show the

value -3, but where the overflow flag is asserted (note that the carry is cleared).

f 2

h MODE W WSIZE XEQ 04

h MODE 1 2COMPL XEQ

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 82 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

82

Remainder after division and RMDR
Division leaves the integer portion of the result in the X register. If the remainder

is not zero, then the carry flag will be set otherwise it will be cleared.

There are times when it can be useful to obtain the remainder, instead of the

quotient of the division � which can be done using the RMDR function (the

secondary function of the / (divide) key). This function computes |Y| MOD |X|.

The sign of the result matches the sign of the dividend (ie: the sign of register Y).

Set the calculator into 2�s complement mode, with 16 bits of precision working in

base 16

Key strokes Display Description

66 ENTER 

7 /  Note the carry annunciator is asserted because

66/7 leaves a non zero remainder

2 /  Note carry is NOT asserted because E/2 leaves a

zero remainder

4 h RMDR  Remainder of 7 / 4

Square root
The square root function computes the root of the value in the X register. The

fractional part of the square root is lost � but if the fraction is not zero then the

carry is set, otherwise it is cleared.

Negative Numbers � changing signs
The +/- function will change the sign forming the 1�s or 2�s complement of the

value in the X register. If the X register holds the largest possible negative

number in 2�s complement mode then the only effect of using this function will be

to set the overflow flag.

In unsigned mode, using the +/- key forms a 2�s complement of the X register,

and also sets the overflow flag (confirming that the notation cannot cope with a

negative number).

To enter a negative number, type the number and then click the +/- key.

Negative Numbers � absolute value
The absolute key on the WP 34S keyboard is the |x| secondary function of the

zero key. This function converts the X register into its absolute value, forming the

1�s or 2�s complement of a negative number. There is no change if the calculator

is in unsigned mode, or the number is positive.

If the X register holds the largest possible negative number in 2�s complement

mode, then the only effect of taking the absolute value will be to set the overflow

flag.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 83 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

83

Logical operations
The suite of logical operations include NOT, OR, AND, XOR available on keys on

the keyboard. Addition functions for NOR, NAND and XNOR are available in the

X.FCN catalogue. All these functions return the result of a bit to bit operation

OR, NOR, AND, NAND, XOR and XNOR all operate on matching bits in both the X

and Y register, leaving their result in X (and the stack drops by 1). The NOT

(invert) operator acts on the X register only (no stack drop)

Set the calculator to 2�s complement mode, 8 bits of precision & base 2

Logical NOT
The logical NOT operator simply inverts each bit in the representation. It is the

same as taking the 1�s complement. Observe that NOT is a one value function.

Example: Enter 10111110 into the X register and use the NOT operator to invert

each bit, and obtain 1000001.

Logical AND
Logical AND (sometimes called the product) compares two bits, and returns a 1

when both input bits are 1. Otherwise it returns a zero. The following will

demonstrate the idea. Note that AND, NAND, OR, NOR, XOR and XNOR are all

two value functions.

With the calculator in the same mode, enter 1001100, then type 10110110 and

select the logical AND function (a secondary function of the 7 key). Giving�

0100 1100

1011 0110

0000 0100

Y Reg:

X Reg:

X AND Y:

LOGICAL BITWISE AND

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 84 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

84

Logical NAND
Logical NAND (inverse of AND) compares two bits, and returns a 0 when both

input bits are 1. Otherwise it returns a 1. The following will demonstrate the idea.

NAND is a two value function located in the X.FCN catalogue.

With the calculator in the same mode, enter 1001100, then type 10110110 and

select the logical NAND function in the X.FCN catalogue. Giving�

Logical OR
Logical OR (sometimes called the sum) compares two bits, and returns a 1 when

either or both input bits are 1. If both bits are zero, it returns a zero.

Enter 1001100, then type 10110110 and select the logical OR function (a

secondary function of the 8 key). Giving�

0100 1100

1011 0110

1111 1110

Y Reg:

X Reg:

X OR Y:

LOGICAL BITWISE OR

0100 1100

1011 0110

1111 1011

Y Reg:

X Reg:

X NAND Y:

LOGICAL BITWISE NAND

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 85 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

85

Logical NOR
Logical NOR (inverse of OR) compares two bits, and returns a 0 when either or

both input bits are 1. If both bits are zero, it returns a 1. NOR is a two value

function in the X.FCN catalogue.

Enter 1001100, then type 10110110 and select the logical NOR function in the

X.FCN catalogue. Giving�

Logical XOR
Logical XOR (sometimes called the difference) compares two bits, and returns a 1

when the two bits are different. If both input bits are the same (either both 0 or

both 1) the function returns a zero

Enter 1001100, then type 10110110 and select the logical XOR function (a

secondary function of the 9 key). Giving�

0100 1100

1011 0110

1111 1010

Y Reg:

X Reg:

X XOR Y:

LOGICAL BITWISE XOR

0100 1100

1011 0110

0000 0001

Y Reg:

X Reg:

X NOR Y:

LOGICAL BITWISE NOR

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 86 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

86

Logical XNOR
Logical XNOR (inverse of XOR) compares two bits, and returns a 0 when the two

bits are different. If both input bits are the same (either both 0 or both 1) the

function returns a 1. XNOR is a two value function in the X.FCN catalogue

Enter 1001100, then type 10110110 and select the logical XNOR function in the

X.FCN catalogue. Giving�

0100 1100

1011 0110

0000 0101

Y Reg:

X Reg:

X XNOR Y:

LOGICAL BITWISE XNOR

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 87 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

87

Bit Shifting and Rotating
Bit shifting is used to move bits either left or right across positions in a register.

The bit that falls out at the end of the word, and also the value of the bit entering

the vacated position depends on what type of operation is being performed.

Bit shifting is a very important concept in hardware engineering. Shifting a binary

register left n places has the same effect as multiplying the original register value

by 2
n
. Similarly, shifting to the right divides. Bit shifting offers significant speed

advantages over multiplication/division algorithms even if they only work to

powers of 2.

Shifting Bits
The WP 34S can perform two different shifts on the X register, known as a logical

shift, or an arithmetic shift.

Logical Shifts
Logical shifts (either left or right) move all the bits in the X register n bits to the

left or the right. Bits shifted out of the word overwrite the carry bit and new bits

fed into the register are always zero�s ie:

The logical shift left command is located in the X.FCN catalogue, and is called SL.

Similarly the logical shift right command is in the same catalogue and is called

SR. Both commands require an argument of n (for the number of bit shifts). A

zero value makes no change (the calculator executes a no operation - NOP).

Note
Remember that these commands only apply to integer modes, and so will only appear in the

X.FCN catalogue listing when the calculator is switched to an integer mode of operation.

X Register

Carry

0

X Register 0

Carry

A logical shift left operation

A logical shift right operation

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 88 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

88

Left and Right bitwise Justification
A bit pattern can be either left or right justified within the confines of the current

word size using commands in the X.FCN catalogue called LJ for left justifications,

and RJ for right justifications.

When these commands execute, the stack will lift placing the justified word in the

Y register, and a count of how many bits the word had to be moved in order to

complete the justification in the X register. The carry flag is not affected by this

operation.

Set the calculator into 2�s complement notation, with 8 bits of precision using

binary base 2.

First � set the calculator into 2�s complement mode.

Set 16 bits of precision

Switch into integer mode using base 2

Now type the binary value 1111 into the X register, and select the command LJ in

the X.FCN catalogue. After execution, the X register will hold the value 1002 which

indicates that the original bit pattern required shifting 4 places to the left in order

to carry out the left justification. Pressing the roll down key to move Y into X

reveals the justified value of F016 as the following sequence shows

The same logic applies to the right justification command RJ

f 2

h MODE W WSIZE XEQ 08

h MODE 1 2COMPL XEQ

After execution of LJ the X register shows the

number of places required to shift left to left

justify - in this case 4 were necessary

The Y register holds the justified value and

so can be read by rolling the stack down

revealing the left justified value of F016.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 89 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

89

Arithmetic Shift Right
The function ASR (located in the X.FCN catalogue when the calculator is in integer

mode) will move the contents of the word in the X register n bits to the right (just

like SR). However, instead of feeding a zero into the space on the left side of the

register the sign bit is regenerated (copied). This doesn�t make any difference in

unsigned mode which has no sign bit and where ASR behaves like SR. In all

cases, the least significant bit in the X register is shifted into the carry bit.

Shifting a positive binary number right n places is the same as dividing by 2
n
.

Given the ASR function regenerates the sign bit it can be used to divide an even

negative number by 2 (odd numbers actually result in one less than division by 2)

Assume the calculator is using 2�s complement notation, with 8 bits of precision,

using binary base 2 then entering 0111 1111 (12710) into the X register and

executing �ASR 1� will result in the carry flag being set, and the X register

containing 0011 1111.

Leaving the mode as 2�s complement, with 8 bits of precision then entering 1000

0010 (-12610) into the X register and executing �ASR 2� will result in the carry

flag being set, and the X register containing 1110 0000 (-3210).

If we switch to unsigned operation (using UNSIGN in the MODE catalogue) with 8

bits of precision, then entering the same value 1000 0010 (13010) into the X

register and executing �ASR 2� will result in the carry flag being set, and the X

register contains 0010 0000 (3210) � in other words, when working in unsigned

mode, ASR does indeed behave like a logical shift right (SR) command.

Rotating bits
On the WP 34S there are two different types of rotate functions

 Rotate n places left or right (RL n, RR n � both in the X.FCN catalogue)

 Rotate n places through the carry left or right (RLC n, RRC n � both

functions in the X.FCN catalogue)

Note
Although Sign and Mantissa integer mode is not specifically covered by this guide, it might

be useful to know that the ASR command behaves slightly differently in that mode. ASR

leaves the top bit unchanged and shifts the rest of the bits right placing a zero into the

second top most bit. Consider the value 1000 0010 (which is -210 in sign and mantissa

mode). Executing ASR 1 will result in the X register holding the value 1000 0001 (-110).

Observe that the sign bit doesn�t move.

X Register

Carry

An arithmetic shift right operation

Regenerated Sign bit

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 90 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

90

Rotation
Using the RL n and RR n commands located in the X.FCN catalogue rotate the X

register either left or right by n places. These functions differ from the shift

commands because the output side of the register is fed to the carry AND to the

input side of the same register.

Pictorially RL and RR work as follows

Rotation through the carry flag
The RLC n and RRC n commands only differ from RL and RR in the way the carry

is used as a staging bit.

Pictorially RLC and RRC work as follows

X Register

Carry

X Register

Carry

A rotate left through the carry operation

A rotate right through the carry operation

X Register

Carry

X Register

Carry

A rotate left operation

A rotate right operation

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 91 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

91

Negating, Asserting and testing the state of bits
Individual bits in the word in the X register can be asserted (set to 1), or negated

(cleared to 0) using the set bit (SB) and the clear bit (CB) commands located in

the X.FCN catalogue.

Both commands take an argument that defines the particular bit number to

change (ie: set or clear) � a number that starts from zero for the least significant

bit of the X register. With n bits of precision in the current calculator word, the

most significant bit would be identified by n-1.

In the example below, the calculator is set to 64 bits of precision

Clear the X register and use the following command sequence to set bit 4.

After executing this command, the X register zero will be changed to 100002

Execute this sequence to clear the same bit

After executing this command, the X register will be zero.

Testing bits
Individual bits can be tested using two commands resident in the TEST catalogue.

The: BC? n command tests to see if bit n is clear in register X. If it is, the

function returns a true, otherwise it returns a false

Similarly the command: BS? n in the same catalogue tests to see if bit n is set in

register X. If it is, the function returns a true, otherwise it returns a false

Note
Remember these commands will only be present in a catalogue when the calculator is

switched to integer mode.

h X.FCN S CB XEQ 4

h X.FCN S SB XEQ 4

0 1 2 3 60 61 62 63

X register contents

With 64 bits of

precision, bit number

63 identifies the most

significant bit

Bit number zero

identifies the least

significant bit

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 92 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

92

Bit masks � left and right justified
The MASKL n and MASKR n functions in the X.FCN catalogue are designed to

create a left or right justified mask of all bits set to 1 where n defines the number

of bits in the mask. These commands can be used to dynamically define a mask

that can be used to isolate specific bits in a register by for example AND�ing the

mask with the register.

If the calculator is set to 2�s complement mode, 8 bits of precision and binary

base 2, then executing the following command will create a mask in the X register

of 111000002

Similarly the following command sequence will create a mask in the X register of

1112

Mirroring bits
The �MIRROR� function located in the X.FCN catalogue when the calculator is

working in integer mode takes the bits in the X register working within the word

size of the calculator and mirrors them around each other horizontally.

So for example with 2�s complement mode, 8 bits of precision and working in

binary base 2, a word in the X register of 00001101 would become 10110000.

Double Functions
The WP 34S provides a number of double functions, known as DBLx (double

multiply), DBL/ (double divide) and DBLR (double remainder). All three are

located in the X.FCN catalogue. These functions allow the precise calculation of a

product double the given word size, and the precise calculation of a quotient and

remainder from a dividend of double word size.

To obtain meaningful double numbers as results when working in hexadecimal

and octal modes, the word boundary (which is based on the number of bits) must

not split a digit. You should therefore specify a compatible word size (a multiple

of four in Hex mode and a multiple of three in octal mode.

h X.FCN M MASKR XEQ 03

h X.FCN M MASKL XEQ 03

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 93 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

93

Double Multiply - DBLx
The DBLx function multiplies two single word quantities � the first in the X

register and the 2
nd

 in the Y register, leaving the result in both the X and the Y

register. With multiplication, the maximum bit depth required for the result is

always the sum of the bit depths of the two multiplicands. Note that the stack

does not drop � in effect the two original values are overwritten by the product

result.

The result is right justified with the least significant bits in the Y register, and the

most significant bits in the X register.

With the calculator in 2�s complement mode, with 8 bits of precision and using

binary base 2 � then consider the following computation involving the

multiplication of 100 by 32.

Switch the calculator into the appropriate modes (2�s complement, 8 bits of

precision, and binary base 2), then type 11001002 and press ENTER. Then type

1000002 and execute the DBLx command via�

The most significant word of the result will be left in the X register (ie: 11002) and

the least significant word of the result will be in Y (100000002) which can be

obtained simply by pressing the stack roll down key R

After execution of DBLx the X register holds

the most significant word of the result�

�and the Y register holds the least significant

word

h X.FCN D DBLx XEQ

1100100

x 100000

1100,1000,0000

100

x 32

320010

Use 2�s complement mode, with eight bits of precision & base 2 for the example below

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 94 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

94

Double Divide � DBL/
The DBL/ function computes the quotient of a dividend of double word size in the

Y and Z registers (where Y holds the most significant bits) divided by a single

word divisor in the X register. The stack drops twice during the execution, placing

the single word result in the X register.

The stack contents before and after execution are as follows:-

With the calculator in 2�s complement mode, with 5 bits of precision and using

binary base 2 � consider the following computation (-88 ÷ 11).

11000

01011 11101 01000 11

-8

-88

Use 2�s complement mode, with five bits of precision & base 2 for the example below

X (divisor)

Result

Y Z

Dividend

Ie: The 10 bit representation of -8810

split between the Y and Z registers on the stack

t

..z Z

T

y.. Y

x X

Dividend with the

high order bits in the

Y register

Divisor

t

t

t

(y..z)/x

x

Stack before execution Stack after execution

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 95 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

95

Switch the calculator into the appropriate modes (2�s complement, 5 bits of

precision, and binary base 2), then enter the following keystrokes

Key stroke Display Comment

1000 ENTER  These are the least significant bits of the 10 bit

dividend � and will end up in the Z register

11101 ENTER  These are the most significant bits of the 10 bit

dividend � and will end up in the Y register

1011 DBL/
*
  Quotient result (ie: -8)

*
 Execute the DBL/ command via the key sequence�

Double Remainder
The DBLR command operates like DBL/ except that the remainder is returned,

instead of the quotient.

The remainder is determined in exactly the same way as for the RMDR command

(see earlier notes) with the sign of the result matching the sign of the dividend.

h X.FCN D DBL/ XEQ

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 96 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

96

Part 4

WP 34S

Programming

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 97 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

97

Programming
We�ve now looked at a number of functions � all of which have been operated

directly from the keyboard using what we might call an �immediate mode of

operation�. You type on the keyboard, you get an immediate result.

In this section we�re going to look at how to write programs for the WP 34S. We

are going to cover the following issues.

 How to key in a program

 How to edit a program

 How to run a program

 How to delete a program

The WP 34S uses a style of writing programs known as Keystroke Programming

which mirrors the same key strokes we use when we are using the machine in an

immediate mode of operation. Consider the formula used to calculate the

circumference of a circle

C = 2πr

Given a radius r of 40mm, feet, miles or whatever unit you want, you might

compute the circumference using the following keystrokes

In this case the radius (40) is entered onto the stack. Pi is then entered and the

two are multiplied. Finally 2 is entered and the product of 2 and the intermediate

result (Pi.r) gives the resulting circumference which will be displayed as shown

below when the calculator is fixed to 4 decimal places.

We could use this as the basis of a program while keeping two concepts in mind.

Firstly the program will need a name (so that the calculator can refer to and call

this program uniquely from any others). Secondly it is useful to define the

program in such a way that it picks up the radius directly from whatever we enter

into the X register before we actually call the program. That way we can use the

program to find the circumference of a circle with any radius.

h π

ENTER 40 × 2 ×

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 98 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

98

The program would look like this.

01 LBL �CIR�

02 π

03 x

04 2

05 x

06 END

You can probably see that when this program runs, it assumes that the X register

will contain a valid radius (given it starts by loading Pi and then multiplying).

The label (LBL) instruction on line 01 identifies the program uniquely by the name

�CIR�. In this example we are using what is known as a global program label (ie:

the string of characters CIR surrounded by single quotes). Global names can be

1, 2 or 3 alpha characters long, and are case sensitive. They are so named

because when we later instruct the calculator to execute a �global� program

name, the calculator searches for that name throughout the entire available

program memory space.

The END instruction on line 06 is necessary to separate this program from the

next program in memory. Line 2 enters the value of Pi into the X register, and the

multiply instruction on line 3 forms the product of Pi and the radius. Line 4 enters

2, and the multiply instruction on line 5 forms the final result. The program then

terminates.

To calculate the circumference, you would key in the radius into the X register

and then run the program. At the end of execution, the result (the circumference

of the circle) would be found in the X register.

Keying in our first program � �CIR�
To key a program into the WP 34S, we start by doing two things.

1. We tell the calculator to set its program pointer to the next free program

memory location. We will then store our program�s first instruction in that

location. The program pointer is used by the calculator to record the

address of one particular line of program memory.

2. We then leave �run mode� which is the normal mode for the calculator and

enter �Program mode�. At that point we can enter the list of instructions.

The key sequences required for these two steps are

h GTO . . h P/R

Instructs the WP 34 to

leave run mode and

enter program mode

Sets the WP 34 Program

Pointer to the next free

memory location ready

for a new program

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 99 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

99

After the two steps above, you will see something similar to the following display

(NB: the free space shown as 525 may differ on your machine depending on the

precise allocation of registers etc).

The number shown here reflects

how many program steps are

available � but note that this is

dependant on how the memory

in your calculator has been

allocated to registers and so

may be different on your

machine.

This portion of the display shows

what line or step of the program is

being displayed.

The �BEG� annunciator means

that the program is sitting right

at the beginning of memory

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 100 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

100

Let us now enter each program line. If you have already set the calculator into

program mode, then simply ignore the first line (below) and work through the

remaining key stroke sequences shown on the left side. The right hand shows the

screen as it might appear (allowing for the difference in register space on your

calculator)

Now create a new label, and because we are about to enter three alpha

characters to define the new global labels name � we use the ENTER key to

switch the calculator into the alpha mode. Note that the LBL display will then

show a single quote

Now type in the three letters of the global name. C is on the top line, I is on the

roll down key, and R is on the digit 5 key. In alpha mode you DON�T use shifts to

input the letters you just press each relevant key.

Global (alpha) labels can only be 1, 2 or 3 characters long. As soon as we enter

the third and last character �R�, the calculator will immediately conclude the label

� and add the last single quote. If we wanted to enter a shorter label (ie: 1 or 2

characters) then we would terminate the label name early by pressing ENTER

following the last character.

Before you press the exit key, note that you can use the two scroll keys (▼▲) to

move up or down the lines of the program. Press exit to leave program mode.

R

I

C

h GTO . . h P/R

EXIT

×

2

×

h π

f LBL ENTER

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 101 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

101

As soon as you press the exit key the calculator automatically inserts an END

instruction to correctly terminate this program.

You can now invoke this new program to calculate the circumference of a circle of

any radius r. Key in the radius, and use the XEQ key as shown below.

The program will execute, and the display will show�

Key in 1250, and execute the program again to find the circumference of a

different circle with radius 1250 miles.

Now that the program has executed at least one time, you can use a shortcut

that takes advantage of the fact that the calculators program pointer is currently

pointing at the CIR program (actually it will be pointing to the very first line). As a

result, if you press the Run/Stop key (ie: R/S) the program will run again. For

example the following keystrokes will re-execute the same program:-

The answer is nearly 7854 miles.

Note
Run/Stop is aptly named. If a program is running, this instruction will stop execution

(perhaps awaiting the user entering new data). If no program is running, then this key will

cause execution to begin from the address of the step in the current program pointer (see

next section) and that means if the program pointer changes � the R/S key used in the

example above may not work.

R/S 1250

XEQ 40 C I ENTER R

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 102 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

102

Program Pointer
The calculator uses the program pointer to address one specific line in program

memory, and it can be thought of as a permanent record which only changes

when programs are written or updated, when they are called or indeed when you

specifically change the pointers value via GTO, XEQ or the scroll keys (▼ Or ▲).

Program-Entry mode
The key sequence h P/R toggles the calculator in and out of program-entry

mode. In this mode, functions and numbers you type on the keyboard are saved

as program instructions and are not immediately executed.

Program-Step Number
While working through the example above � each new line entered caused the

step number to increment. In effect, step number n points to a particular

program line, and you can use the scroll keys (▼▲) to change the current step on

display any time.

Inserting new program steps
Instructions keyed into a program are inserted immediately after the current

program line at which point the step number increments by one. Therefore to

insert a new line between steps 1 and 2, you would position the step number on

step 1, and then key in the new instruction.

Deleting existing program steps
To delete a program line, position the step number on the line to delete, and then

press the backspace key (←). When you delete a line the step number moves to

the previous line

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 103 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

103

Branching and Calling � what�s the difference?
Programs can invoke each other in two different ways. One program can branch

to another program using the GTO instruction (often known as a jump).

Alternatively one program can call another program using the XEQ instruction.

Both methods are initially quite similar but the big difference with the call

mechanism is that when the 2
nd

 program executes a RTN (ie: return) instruction,

execution will then return to the line immediately following the original XEQ

In this example the program �PRG� uses a (conditional) branch (or jump) to

invoke local label B (via the blue path). It then uses the XEQ instruction to �call�

the subroutine with label A (via the orange path). Following the execution of the

return instruction (RTN) at the end of subroutine A execution then reverts to the

instruction directly following the original call.

Program Labels
In the example circle circumference calculator program above, we used the global

label �CIR� to define the start of the program. Global labels define a program

uniquely in the entire program space and when we tell the calculator to execute a

global program name, the calculator searches all of the available program space

to try to locate that program name. Generally a program should always start with

a global label.

Within a program, individual routines can be identified with local labels.

We will look at both global and local labels in more detail next.

Global Labels
Global labels use either 1, 2 or 3 alpha characters in a string and are

distinguished by having single quote marks around the label name. An example is

our example program name �CIR�. Global names are case sensitive so �CiR� is not

the same as �CIR� and it should be noted that the global names �A�, �B�, �C� and �D�

are not the same as the special local hotkey names A, B, C or D (see predefined

hot keys below). In effect these would be 8 distinct labels.

LBL A

 .

 .

 .

 .

 .

 RTN

LBL �PRG�

 X<0?

 GTO B

 .

 LBL B

 XEQ A

 .

 .

 .

 .

 LBL C

 .

 .

STOP

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 104 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

104

Global Labels:-

1. Can be accessed no matter where the program pointer is located. The

search always starts at the beginning of program memory.

2. Will be listed in the RAM catalogue (see the secondary function CAT on the

STO key).

3. Should always be unique in the calculator memory to avoid confusing one

program with another. (If two identical global names were to exist in

program memory, then the first program in memory at the lowest step

number would always be invoked first).

Local Labels
There are two types of local labels, numeric and hotkey alpha labels.

1. Numeric labels are identified by two digits 00 to 99. They can be entered

directly as a two digit numeric value or can be obtained indirectly from the

contents of a register. These codes are also mapped to keys on the

keyboard using key coded local labels (see below)

2. There are also a set of four predefined hotkey local labels assigned to the

A, B, C and D keys on the top of the calculator.

Local labels can be used to mark and provide access to various parts of a

program � and they facilitate program branching.

Local labels can be�

1. Accessed ONLY within the current program (ie: the program identified by

the program pointer)

2. Duplicated in separate programs � that is to say that local labels do not

need to be unique within the calculator memory, but they must be unique

within the confines of one single program.

Modifying �CIR� to demonstrate global AND hotkey local labels
To demonstrate some of the ideas involved with the two different types of labels,

we will modify our CIR circumference calculation program, so that it now traps a

condition where the X register contains a negative value on entry and if found will

make the X register value positive before the calculation proceeds.

Note
This would be dealt with more elegantly by using the abs function |x| but it suits our

demonstration better to do this with a test followed by a conditional branch.

Note
To type the letters for a global label for example after pressing XEQ, or GTO or when writing

a new line of a program press ENTER to switch to alpha mode (note the single open quote

that appears), and optionally press ENTER to end if using fewer than 3 characters for the

label � refer to the CIR example above.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 105 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

105

Note that when a program encounters a test instruction such as (X < 0) the test

is evaluated and the instruction on the next line executed only if the test outcome

is true. Otherwise the next instruction is skipped. Our modified program (with the

test) would now look as follows:-

LBL �CIR�

x>=0?

GTO A

-1

x

LBL A

π

x

2

x

STOP

In this particular demonstration we will use the A hotkey out of the four (A, B, C

and D) available on the top row of the calculator as our local label.

The following keystrokes will be required to modify the existing CIR program

First � use GTO �CIR� to locate the start of our circumference program which uses

the global label �CIR�. Next we switch the calculator from run into program mode

using the P/R key. Note that following this key sequence, the calculator display

shows the very first step of the program.

Remember that inserting a new instruction when sitting on step n, will actually

place the instruction at step n+1. While on step 1, insert a test to find out if the X

register is >= 0. The test is located in the TEST catalogue. The following

keystrokes will open the catalogue at which point we type X to find all commands

starting with the letter X. Then scroll (▼▲) until you find x≥? then press enter to

select it. The calculator will expect an argument which can be 0 or 1 in the case

of an immediate test (other values such as register numbers could be used here).

We use zero.

Note that when a program encounters a test instruction such as (X>=0) then the

test is evaluated and the instruction on the next line executed only if the test

outcome is true. We will place the branch after the test � making it conditional

If the test outcome is TRUE (which will occur if the X value is positive), then this

next line will execute. If it does, the calculator will branch straight to the

circumference calculation code (skipping multiplication by -1). Note that for the

label we use one of the four hotkeys on the top line of the calculator namely: A.

If the X register value is negative, then we will execute this part of the code

designed to multiply the users X register by -1. Note you could amend this code

to simply use change sign � try that if you wish to experiment.

h GTO A

h GTO h P/R C I R ENTER

h TEST X X≥ ? ENTER 0

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 106 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

106

Now insert a new local label. We will use the A hotkey at the top of the keyboard

Feel free now that the code changes are complete to use the scroll down key to

check what the next line on step 8 is. Note that it should be showing the constant

Pi (constants are always prefixed by a hash) and the rest of our CIR program ie:

�x�, �2�, �x�, �END� on steps 9, 10, 11 and 12

When you�re ready, exit the program

Leave program mode.

If you now execute the modified program passing either 40 or -40, the program

will check the input and adjust to ensure that the function always gives a positive

result.

Therefore either this command sequence

or this command sequence

will result in a display showing

XEQ 40 C I ENTER R

XEQ 40 C I ENTER R +/-

×

+/-

1

f LBL A

EXIT

▼

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 107 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

107

Predefined local program labels A, B, C, D � hotkey labels
In the modified CIR program above, we used the global label �CIR� and the hotkey

local label A. The calculator includes a set of four predefined hotkey local labels

and which are labelled A, B, C and D. Any of these four keys can be used (and in

any order) as local program labels.

Note that these four local labels are NOT the same as global labels �A�, �B�, �C� or �D�

If any of the four keys are NOT being used as a local label in the program

identified by the current program pointer, then each will automatically reassign

themselves a set of default and useful functions � defined for each key as

follows:-

Key Default key function when NOT assigned as a local program label

A Sigma (cumulative stats data addition function) - shown as ∑+

B Reciprocal - shown as 1/x

C Power � shown as y
X

D Square root � shown as √x

Key Code Labels
In addition to the four hotkey local labels A to D, it is possible to use virtually any

key on the keyboard as a local label in a program. Instead of using a name, these

keys are referred to in the program using a numeric key code (one per key which

is based on the keys position row and column numbers on the front of the

calculator). We invoke these type of labels using the execute command key (XEQ)

followed by the chosen key. Internally � the calculator converts the pressed key

to its key code number, and then calls the program label with that number.

One key that cannot be used in this way is the f shift (yellow) key.

Note
The hotkey auto assignment feature warrants a little care

Don�t be surprised for example if the program pointer is pointing somewhere unexpected,

and you press A expecting it to resolve to a program label, only to find the number 1 appears

in the X register.

This scenario would occur if A actually wasn�t used in the program currently addressed by

the program pointer. As such, the auto assignment feature would mean that the A key would

be mapped to the + function and so pressing that key would be treated as the 1
st

 sigma

data point.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 108 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

108

In the table below, the f shift key is shown in white as it cannot be used as a key

coded label, but all the others can. Note the number below each key (in brackets)

is the key code for that key. For example the digit 8 key is on row 4 and position

3 from the left � hence the key code is 43.

The green keys in this table can be used directly (as in the example we will go

through further down), but the other orange keys can only be used when prefixed

with the yellow f shift key. That�s because unless we qualify these keys (using the

shift) then the calculator would interpret their meaning in a different way.

A

(11)

B

(12)

C

(13)

D

(14)



(15)

CPX

(16)

STO

(21)

RCL

(22)

R

(23)

f

g

(25)

h

(26)

ENTER

(31)

X <> Y

(32)

+/-

(33)

EEX

(34)

←
(35)

XEQ

(41)

7

(42)

8

(43)

9

(44)

/

(45)

▲
(51)

4

(52)

5

(53)

6

(54)

X

(55)

▼
(61)

1

(62)

2

(63)

3

(64)

-

(65)

EXIT
(71)

0

(72)

.

(73)

R/S

(74)

+

(75)

Figure 5 � Keyboard key codes for all keys

As an example we will now open our modified circumference program at the start,

delete the previously used local label A and replace both it and the call to it with a

new label using the key coded �CPX� key.

In order to locate the start of the program, first use GTO (a secondary function of

the XEQ key) followed by the current label � which is still currently the global

label �CIR�, and then set the calculator into program mode. At that point the

display will be showing the first line of the CIR program.

Refer to the following table to change the original hot key label A to a new key

coded label linked to the CPX button

First � use GTO �CIR� to locate the start of our modified circumference program

which is still using an internal local label A. Next we switch the calculator from run

into program mode using the P/R key. Note that following this key sequence, the

calculator display shows the very first step of the program.

Scroll down to the branch using the scroll keys (▼▲) to locate the GTO

instruction on step 3. This is the line that branches to the circumference

calculation. Delete step 3

Now insert a new GTO instruction that this time branches to a key coded label

using the CPX key. The key code will be 16 because the CPX key sits on row 1,

column 6 of the keyboard. Note the way the GTO instruction label is shown simply

as the numeric label 16

h GTO h P/R C I R ENTER

←

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 109 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

109

Now scroll a little further down to get to the original definition for label A on step

7. This will be replaced with our new label for the key coded CPX key. Once you

get to step 7, delete that line�

Now insert the new local label using the key coded CPX key

Leave program mode.

With this modification in place, program execution won�t change at all. The only

change will be that the program will now employ a key coded local label. We

execute the modified program passing either 40 or -40 and the program will

again check the input and adjust to ensure that the function always gives a

positive result.

Or the second key sequence

�and observe that both results are 

Note
In this example - the key coded key label uses the code for the CPX key, and so in effect this

label is just a numeric label with the value 16. Remember this as you read the number labels

section below and in particular as you read the notes regarding direct and indirect execution

(below)

XEQ 40 C I ENTER R

XEQ 40 C I ENTER R +/-

←

CPX h GTO

f LBL CPX

EXIT

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 110 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

110

Number labels � 00 to 99
In addition to the four hotkey local labels A to D, and key coded local labels, we

can also use numeric local labels instead. These use a fixed 2 digit format, and

range from 00 to 99 using decimal notation. Let us re-edit the same program in

much the same way as above and change the label from the key coded CPX key,

to the numeric label 32

First � use GTO �CIR� to locate the start of our modified circumference program

which is still using an internal local label A. Next we switch the calculator from run

into program mode using the P/R key. Note that following this key sequence, the

calculator display shows the very first step of the program.

Scroll down to the branch (the GTO instruction) on step 3. This is the line that

branches to the circumference calculation. Delete step 3

Now insert a new GTO instruction that this time branches to the numeric code 32.

Note the way the GTO instruction label is again (just as per the keycoded label)

shown simply as the numeric label 32

Now scroll a little further down to get to the original definition for label 16 on step

7. This will be replaced with our new label for the numeric code 32. Once you get

to step 7, delete that line�

Now insert the new local label using the numeric value 32

Leave program mode.

With this modification in place, program execution won�t change at all. The only

change will be that the program will now employ a numeric local label. We

execute the modified program passing either 40 or -40 and the program will

check the input and adjust to ensure that the function always gives a positive

result.

Or the second key sequence

XEQ 40 C I ENTER R +/-

←

32 h GTO

h GTO h P/R C I R ENTER

f LBL 32

EXIT

←

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 111 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

111

and observe that both results are 

Direct program execution using number labels
Regardless of how a local label has been created, either as a number label, or as

a key coded label � the calculator treats both these labels the same way. You can

for example branch to some numeric label n using the line GTO n, or you can call

the numeric label n using the line XEQ n. This is known as direct execution.

Let�s create a new and very simple program� using local labels throughout. This

example will merely take the X register value and multiply it by 2.

Instruct the calculator to find the next free memory area for a program, and then

switch into program mode.

Now create a new local label called 32

Now enter 2 and multiply the result

Use this key sequence to take a value (64) and double it

Note
Remember that when we exit program mode, the program pointer will still be pointing at our

program. Hence we will be able to invoke the local label 32.

XEQ 32 64

EXIT

×

2

h GTO . . h P/R

f LBL 32

XEQ 40 C I ENTER R

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 112 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

112

Indirect program execution using number labels
Number labels can be executed in a slightly more interesting way using indirect

addressing. This method of executing a program involves storing the number of

the label linked to that program in some register p, and then instructing the

calculator to indirectly execute the label number held in register p. An example

will help make this clear � based on the circumference program (above) using

label 32

Pick a register � let�s say register 97. This will be our indirect register � and in it

we will store the label of our new doubling program (ie: 32). Use the following

keystrokes to store the value

Now, execute the program indirectly � with 64 in the X register, using the

following key strokes.

The program will execute, and the display will show 

The same indirect addressing technique can also be used with any RPN stack

register. For example � if we wrote the programs label into the Y register, we

could then indirectly invoke the program using the Y register.

Note
Incidentally � if you refer to the key code chart above, you will find that numeric label 32

happens to be the code for the X exchange Y key. As the calculator treats key code labels,

and numeric labels the same way � you are perfectly at liberty to invoke the new test

program using the key sequence.

XEQ 64 X Y

XEQ 64 97

This key is located on the top row of the

calculator, and when pressed in this context tells

the WP 34S that an indirect input is being given.

The calculator will then operate in temporary alpha

mode where numbers are valid, AND SO ARE the

12 named stack registers X,Y,Z,T,A,B,C,D,I,L,J and

K. Note that register X is invoked by pressing the

dot key twice.

STO 32 97

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 113 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

113

You could tackle this in one of two ways. For example you could first load the Y

register with the program label using the following key strokes

and then indirectly invoke the program number label stored in Y

The program will execute, and the display will show 128.0000

Another method would be to simply push the label (32) onto the stack, then push

the value that is to be doubled (64) onto the stack which leaves both registers X

and Y ready. You then invoke the indirect call.

The program will execute, and the display will show 128.0000

Indirect addressing � used to access the stack
Another feature of indirect addressing is its ability to access the stack. The 12

stack registers namely X,Y,Z,T along with A,B,C,D, and I,L, J and K all have a

register number assigned, which starts from 100 for register X. Keep in mind that

from the calculators point of view, any register with a number greater than 99

can only be accessed numerically using indirect addressing.

Stack register Equivalent Register Number

X 

Y 

Z 

T 

A 

B 

C 

D 

L 

I 

J 

K 

For example � if the value 103 was stored in register 23, then the following key

sequence would read the T (top of stack) register.

32 ENTER XEQ 64 Y

RCL 23

XEQ 64 Y

STO 32 ENTER Y

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 114 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

114

Deleting a specific program
In order to delete a program completely from memory � two steps are required.

First � you tell the calculator to GTO the start of the program, and second you

execute the CLP command (which is a secondary function on the back space key).

To delete our doubling test program above we would use the following key

strokes. First set the calculator so that the program pointer is pointing at the start

Then delete that program

The calculator will then challenge you with an �Are you sure?� question � as

follows:-

The action will proceed if, and only if the user presses the �Y� key (hits the R/S

key). Otherwise the deletion will be cancelled.

Deleting all programs
To delete all programs stored in the calculator � invoke the CLPALL function in the

P.FCN catalogue. Just as above, that function will challenge the user � and if the

�Y� key is pressed, all programs stored on the calculators RAM will be cleared.

Saving Programs to the Flash RAM Library - advanced
Although beyond the scope of this guide, it is worth mentioning two extra

commands in the programmers function catalogue that can be used to either save

the current program (identified by the program pointer) to the calculators flash

RAM memory area known as the library. The command is called PSTO. The

program should start (ideally) with a global (alphanumeric) label and note that

this operation will overwrite a previously saved program in the library if it has the

same name.

You use the complementary command PRCL to copy the current program from

the library back into program memory space where it can be edited (note that

duplicate names are allowed) with this operation.

You can browse library function(s) using the CAT catalogue.

f CLP

h GTO 32

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 115 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

115

Program Input / Output
The example circumference program (see above) was rather simple. It only had

one input (the radius) and it didn�t generate any kind of text prompt for that

input, nor did it provide any text to explain the output. Consequently, if a user

revisited the program in 6 months time, it is likely that, at best its use would be

somewhat ambiguous.

The WP 34S has a handy little function useful for electronic engineers and located

as a secondary function on the divide key (it is shown as two vertical parallel

lines). It calculates the combined resistance of two individual resistors placed in

parallel in an electrical circuit.

Consider the following electrical circuit

The combined resistance of Ra and Rb is given by the equation

 Ra . Rb

 Rt = -------------

 Ra + Rb

For example - if Ra was 2K2 (ie: 2200Ω) and Rb was 4K7 (ie: 4700Ω) then the

total resistance would be 1498.5507Ω. We can check the function built into the

WP 34S by entering the two resistor values into the X and Y registers of the

stack, and then executing the function.

Using the following keystrokes�

ENTER 2200 4700 g | |

Ra Rb

It

V

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 116 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

116

As expected, the calculator confirms the total resistance as:-

In the next program example, we are going to create a new program capable of

prompting for the two resistor inputs Ra and Rb, and which will also provide a

text prompt for the output (Rt) after it runs.

In order to do this we need to make use of the Alpha Register.

The Alpha Register � how to display text
The Alpha Register is a specially built register capable of holding up to a

maximum of 31 different alpha characters. The calculators LCD display is capable

of showing the alpha register, albeit on a relatively small area of the screen along

with numeric data (and the normal assorted annunciators)

The processing tasked with displaying alpha data is elegant, in the sense that it

reduces the size of the font only when there are sufficient characters to warrant

it. For example if the final �a� and �t� characters are deleted from the string �Alpha

Data� above, then the calculator will automatically increase the character font

size � as can be seen below

The alpha register can be cleared, have new data written into it � and more

importantly, it can be switched on and off under program control. In other words,

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 117 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

117

it can be used to prompt for inputs. There are a range of functions available to

control the alpha register.

You can write immediate data into the alpha register simply by switching into the

alpha input mode via the following key strokes

As soon as you do this, the calculator will show the �INPUT� annunciator on the

top right of the display�

�and the calculator will switch into alpha entry mode. All letter keys are

interpreted directly. You could type A, B, C, D, E and F (using the top row of keys

on the calculator) and see the following display

At this point, you can terminate alpha mode � by repeating the key strokes�

...the input annunciator will disappear, and the keyboard will revert from alpha

mode to normal mode.

Note two important points. First if you were to switch back to alpha mode now,

the characters ABCDEF would still be present and you would still be able to see

them. In other words, the alpha register holds information (until you specifically

clear it) even when alpha mode is turned off. Second, unless you specifically clear

the alpha register, the act of adding a new character will append it to the end of

whatever is already there (ie: directly after �F� in this case). If you were to add

sufficient characters to overrun the length of the alpha register, then the

characters at the start of the alpha register would be discarded as each new

character was added.

f α

f α

The α character is a

secondary function of the

ENTER key

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 118 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

118

Inserting special characters into alpha
The alpha register permits the use of a wide range of special characters.

Everything from Greek to math symbols. Some of the characters (such as

punctuation and math symbols) are accessed in special alpha catalogues � that is

to say, catalogues that can only be opened when the calculator is running in

alpha mode. Other symbols (including Greek letters) are accessed directly via

keys on the keyboard after one of the shift keys, and off course ordinary English

letters are accessed direct from keys without any shift as we�ve seen above.

Upper and lower case does have relevance for example when dealing with English

or Greek letters (use the keystrokes f ↑ to toggle between upper and lower case).

Alpha Catalogues
When the calculator is in alpha mode, a set of dedicated catalogues are available

to the user. These catalogues provide access to a range of math and punctuation

character symbols for use in the alpha register. The relevant catalogue is first

opened (see keystrokes below) and a particular character located using the scroll

keys (▲▼). The character is copied to the alpha register by pressing ENTER �

which also closes the catalogue. Alternatively EXIT can be pressed to cancel (and

close) the catalogue operation.

Common math symbol alpha catalogue
A set of common math symbols such as greater than, less than, square or round

brackets, equals and others can be accessed in the TEST alpha catalogue which is

opened using the following keystrokes when in alpha mode

The calculator will open a scrollable list of characters. Scroll through the list using

the scroll keys (▲▼) and then press ENTER to place the selected character into

the alpha register. The TEST alpha catalogue will then close. The symbols

available in the TEST alpha catalogue are�

Alpha Mode

TEST Catalogue

Math Symbols

Note
Assume that the calculator is still in the immediate alpha mode described above so you

should be able to see the �input� annunciator on the display.

h TEST

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 119 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

119

Common math symbols super/subscripted alpha catalogue
The WP 34S extends the math symbols available by providing an alpha catalogue

holding super and subscripted variants of assorted symbols (ie: half height and at

either the top or bottom of the character cell). This catalogue can be opened

using the following key sequence.

The resulting alpha catalogue holds the following super and subscripted math

symbols.

Alpha Mode

R Catalogue
Super & Subscripted Symbols

h R

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 120 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

120

Punctuation symbol alpha catalogue
The calculator has an alpha catalogue holding punctuation and style symbols

including common currency symbols. The catalogue can be opened using the

following keystrokes

This alpha catalogue contains the following symbols

Alpha Mode

./, Catalogue

Punctuation Symbols

h ./,

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 121 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

121

Math symbols (stats & complex domain) alpha catalogue
The calculator has an alpha catalogue holding math symbols linked to the

complex domain and statistics. You can access this alpha catalogue by pressing f

shift followed by CPX (ie: top right of the keyboard) as shown below

This alpha catalogue contains the following mathematical symbols linked to

statistics and the complex domain (and other areas of math) � some linked to the

linear estimations we will discuss in later notes.

Alpha Mode

CPX Catalogue

Stats and complex domain symbols

f CPX

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 122 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

122

Arrows and extra math symbol alpha catalogue
There is an alpha catalogue holding arrow symbols and some common math

symbols (such as infinity and root). This catalogue is opened using the following

key sequence�

The catalogue will open to show the following symbols.

Alpha Mode

 Catalogue
Arrow Symbols

Other alpha characters obtained direct from the keyboard
Over and above the characters available in alpha catalogues, there are a set of

extra characters which are available directly from keys on the keyboard when the

calculator is working in alpha mode. These characters are inserted into the alpha

register as soon as the key stroke sequence is used. We look at these characters

next.

English alpha characters (A-Z, a-z)
English characters are entered directly from the keyboard by pressing the

unshifted key shown with the desired character shown in grey at its bottom left.

Note that all English letters can be either upper or lower case. Use the keystrokes

f ↑ to toggle between upper and lower case.

Number digits (0 to 9)
Numbers are inserted directly from the keyboard by f shifting the relevant digit

key 0 to 9.

Note
In fact, the digits 0 and 1 are not linked to alpha characters anyway � so you actually don�t

need to f shift either of these two digits, although it doesn�t matter if you do.

f

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 123 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

123

Logic symbols
When in alpha mode, the following h shifted key symbols can be obtained.

Key sequence Symbol

Other useful h shifted misc symbols � including a space
Other useful symbols direct from h shifted keys are shown below. Note the last

sequence inserts a space character into the alpha register

Key sequence Symbol

Other useful f shifted math symbols
Other useful symbols direct from f shifted keys are as shown below

Key sequence Symbol

f +/-

f X Y

f +

f -

f ×

f ÷

h PSE

h STATUS

h RMDR

h X

h π

h NOT

h XOR

h OR

h AND

h !

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 124 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

124

Greek character symbols
The calculator will allow the insertion of Greek symbols � both upper and lower

case. The following table illustrates the mapping between keys on the keyboard

and their corresponding Greek symbols once the key has been g shifted in alpha

mode. Note that all Greek symbols can be either upper or lower case. Use the

keystrokes f ↑ to toggle between upper and lower case.

Alpha Catalogue of upper and lower case Greek letters

Key Assignment Greek letters (in order) Upper case Lower Case

A 1. Alpha

B 2. Beta

C and/or G 3. Gamma

D 4. Delta

E 5. Epsilon

Z 6. Zeta

The ENTER key 7. Eta

1 (ie: digit one) 8. Theta

I 9. Iota

K 10. Kappa

L 11. Lambda

M 12. Mu

N 13. Nu

X 14. Xi

Note: Omicron is omitted because the character is essentially identical to O when rendered

P 15. Pi

R 16. Rho

S 17. Sigma

T 18. Tau

Y 19. Upsilon

F 20. Phi

H 21. Chi

0 (ie: digit zero) 22. Psi

O 23. Omega

J Close bracket symbol

Q (Nothing assigned to this key)

U (Nothing assigned to this key)

V (Nothing assigned to this key)

W (Nothing assigned to this key)

A useful reference for the Greek alphabet is: http://en.wikipedia.org/wiki/Greek_alphabet

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://en.wikipedia.org/wiki/Greek_alphabet

Page 125 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

125

Alpha Register Commands

The following table defines some of the most useful alpha commands.

VIEW r Secondary function for the RCL key

When a program is started, the display contents are replaced by the �Running Program�

message.

You can display a number while the program is running using the �VIEW� command.

When VIEW is invoked the keyboard switches into temporary alpha mode and will then

accept either a numeric register number 00 to 99, or one of the special register letters

(including those of the stack registers (X,Y,Z,T,A,B,C,D,I,L,J or J). View then updates

the display (and it does so in a way designed to reduce flicker � so there is some

overhead each time this command executes). As soon as the display is updated, control

immediately continues with the next instruction.

You could for example use VIEW to display the X register to the user, as the program is

running.

PSE n Secondary function for the digit 0 key

The PSE command simply pauses calculator execution. PSE takes an argument n to set

the pause delay in multiples of one tenth of a second. During this interval, the display

will show the X register for the time delay defined by n. A delay of zero is actually the

same as �VIEW X�

If you wish to make the view display persist, simply follow it with a PSE n command

Cl Function in the P.FCN catalogue

This command clears the alpha register

View Function in the P.FCN catalogue

This command displays the alpha register without displaying any number. The numeric

portion of the display is replaced by three hyphens.

ON Function in the P.FCN catalogue

This command switches the alpha register on � but comes with the disadvantage that it

displays the tail of the alpha string if it is quite long. It also leaves the alpha register on

so if the program terminates, the user will find themselves in alpha mode (which can be

quite confusing)

OFF Function in the P.FCN catalogue

Switches the alpha display off

VW+ Function in the P.FCN catalogue

This special command is a combination of functions. It enables the display of the alpha

register, while also displaying the contents of any register (just as per view). The name

can be thought of as view with alpha plus register.

PROMPT Function in the P.FCN catalogue

This command in the P.FCN catalogue, is a combination of VW+ X followed by STOP (to

await the users input).

Note
Regarding alpha character entry in the WP 34S when in program mode, you can enter alpha

characters one at a time (one per program step) into a program. However that method is

quite wasteful of program memory. An alternative method allows you to compress three

alpha characters into one instruction. (A nine character string would for example only

require three instructions when compressed in this way). In order to select this mode, you

enter the (yellow shifted) α character twice when you are in the process of typing the alpha

string data into the program.

The next example will demonstrate this compression technique�

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 126 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

126

Parallel Resistor Program using static Alpha displays
This program will request the input of two resistor values (Ra & Rb). It will then

calculate the combined resistance, and display the total value Rt.

Start by instructing the calculator to find the next free space for a new program,

and then switch the calculator from run into program mode.

Now create a new global label called PAR. This will be the name our program will

use.

Now clear the alpha register for the first of our prompts.

With the alpha register cleared, we are now going to fill the alpha register with

the string �Enter Ra�. We start by typing the  character to switch into alpha

entry mode. Note the way the display now shows the INPUT annunciator

We could now start typing one character at a time OR, we can instruct the

calculator to compress the first three alpha characters we type into one

instruction. We signal that we want this compression by typing the alpha

sequence one more time. Note how the left hand now shows a new instruction

called alpha with a start quote.

We can now enter the first three characters of our string ie: �Ent�. As soon as we

have entered the 3
rd
 character, the calculator will close this instruction (which can

only hold a max of three characters). To enter the next sequence of three, we

repeat the process. Note to toggle between upper and lower case use f 

Note that a space character is given by the PSE function (on the 0 digit). Again,

as soon as the third character is entered (ie: the space) the calculator will

terminate the instruction.

f α

e r h PSE

f α

f α

f α

h P.FCN CLα ENTER

h GTO . . h P/R

E n t f ↑

f LBL ENTER P A R

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 127 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

127

Enter the final two characters (capitalising the first) and then press enter to

terminate the string

Then press enter one final time to terminate the alpha entry mode � note the

INPUT annunciator disappears.

We can then execute the PROMPT command to display the alpha register, and the

X register and wait for the user to enter data. Clear the X register before we

make the call � which just ensures the user will see an X=0 display for tidiness.

Don�t forget to type ENTER after PROMPT (not shown for clarity)

We now need to add the next part of the code which prompts for Rb

Now clear the alpha register for the second of our prompts

With the alpha register cleared, we are now going to fill the alpha register with

the second prompt string �Enter Rb�. We start by typing the  character to switch

into alpha entry mode. Note the way the display now shows the INPUT

annunciator

Next instruct the calculator to compress the first three alpha characters we type

into one instruction. We signal we want that compression by typing the alpha

sequence one more time. Note how the left hand now shows a new instruction

called alpha with a start quote.

We can now enter the first three characters of our string ie: �Ent�. As soon as we

have entered the 3
rd
 character, the calculator will close this instruction (which can

Note
If you were to exit out of program mode now, and execute this program it would display the

following screen and then await the users input. It wouldn�t do anything after that � other

than to stop.

f α

f α

h P.FCN CLα ENTER

ENTER

h P.FCN PROMPT h CLx

f ↑ R f ↑ a ENTER

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 128 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

128

only hold a max of three characters). To enter the next sequence of three, we

repeat the process.

Note that a space character is given by the PSE function (on the 0 digit). Again,

as soon as the third character is entered (the space) the calculator will terminate

the instruction.

Enter the final two characters (capitalising the first) and then press enter to

terminate the string

Press ENTER to terminate the alpha entry mode. Note that the INPUT annunciator

disappears.

We can then use PROMPT to display the alpha register, and the X register and

wait for the user to enter data. Note that when this runs, the X register will

already hold the value of Ra. When PROMPT executes, the value of Ra will have

been pushed onto the stack into Y, leaving X free for the users Rb entry.

We now have the two sections of code that together prompt for the inputs Ra and

Rb. Once code execution reaches this point, the value of Ra will be on the Y

register of the stack, and Ra will be in the X register. We can now call the ||

calculation function, and display the result. Let�s add the lines to do that next.

Execute the parallel calculation function

Now clear the alpha register ready for the new text for the result prompt

With the alpha register cleared, fill the alpha register with the final result prompt

string �Rt�. We start by typing the  character to switch into alpha entry mode.

Note the way the display now shows the INPUT annunciator

h P.FCN CLα ENTER

g | |

h P.FCN PROMPT ENTER

ENTER

f ↑ R f ↑ b ENTER

f α

e r h PSE

f α

E n t f ↑

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 129 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

129

Next instruct the calculator to compress the alpha characters we type into one

instruction. We signal we want that compression by typing the alpha sequence

one more time. Note how the left hand now shows a new instruction called alpha

with a start quote.

We can now enter the two characters of our string ie: �Rt�. We terminate the 2

character string by typing ENTER after the last character

Press ENTER to terminate the alpha entry mode. Note that the input annunciator

disappears

With the result in X, and the alpha register set with the result prompt � we can

now display the alpha, and X register and then stop

To run the program, use the following keystrokes

The display will show the first prompt (note that X will be clear)

The user would then type their first Ra resistor value � for example 2200Ω and

then press the R/S key. The exact sequence would be�

2200 R/S

XEQ P A ENTER R

ENTER

EXIT

h P.FCN PROMPT ENTER

R t ENTER f ↑

f α

f α

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 130 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

130

As soon as the run/stop (R/S) key is pressed, the program will continue execution

at the line following the first PROMPT instruction. The display will then show�

The user would type their second Rb resistor value � for example 4700Ω and

press the R/S key. The exact sequence would be�

Again - as soon as the run/stop (R/S) key is pressed, the program will continue

execution at the line following the second PROMPT instruction � this time leading

to the display of the final result. The display will show�

The program appears to work ok

Archiving the program to the flash RAM library
Although beyond the scope of this manual, it is worth demonstrating how it is

possible to archive the PAR parallel resistor program (entered above) into the

calculator library system residing in flash RAM. To do this you use the PSTO

command in the P.FCN catalogue which copies the program identified by the

current value of the program pointer into the library flash RAM.

Assuming that the program pointer is still sitting on the PAR program use the

following keystrokes to copy the PAR program to library flash RAM

Let�s assume that after executing the keystrokes above, you then cleared all

program memory using CLP.

h P.FCN P PSTO XEQ

4700 R/S

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 131 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

131

If you subsequently wished to restore the library copy of the PAR program to

main program memory you would use the following steps.

1. Open the CAT catalogue and use the UP arrow to locate the library

function PAR.

2. Press ENTER to select this function in the library memory

3. Then execute the following keystrokes to restore it to program memory

After these steps are carried out, the program will once again be resident in main

program memory, and can be executed and edited in the normal way.

Debugging the parallel resistor program
Assume for a moment that the Rt value was not correct after the program had

fully run and displayed its result � how might one debug the program?

This program is similar to many, in the sense that you can split the whole

program into two halves. The first being the input gathering (and if you are wise

this stage must include input validation) and the second half being the actual

calculation. In this case, by the time you reach step 25 (where the WP 34S

parallel function || is called) both the resistor values should be on the stack (Ra in

stack register Y, and Rb in stack register X). A good way to verify that this is

correct is to edit the program and insert a STOP just before the || function is

invoked and then make sure (using the external command SHOW) that the right

values are in the right place

Observe that you can use the GTO command to set the program pointer to a

particular line n using the key sequence �GTO .n�. We will use this initially to

position for the insert.

Start by positioning the program pointer at the instruction directly before step 25

(we will insert the new command so that it preceeds the || instruction on step

25). Then switch the calculator into program mode.

Now insert a stop instruction (use R/S) to force the program to stop once it

reaches this line.

Note
This is known as inserting a break point

h P.FCN P PRCL XEQ

h GTO . 24 h P/R

R/S

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 132 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

132

Before you exit you can optionally use the scroll keys (▲▼) to make sure that the

order of the commands after the new insert is PROMPT, STOP followed by ||

To run this debug version of the program, use the following keystrokes

The display will show the first prompt

The user would then type their first Ra resistor value � for example 2200Ω and

then press the R/S key. The exact sequence would be�

As soon as the run/stop (R/S) key is pressed, the program will continue execution

at the line following the first PROMPT instruction. The display will then show�

The user would then type their second Rb resistor value � for example 4700Ω and

then press the R/S key. The exact sequence would be�

At that point the program will encounter the STOP instruction and the program

will stop. The display will simply show the current contents of the X register ie:

EXIT

4700 R/S

2200 R/S

XEQ P A ENTER R

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 133 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

133

However, at this breakpoint, we can now invoke the SHOW command (a

secondary function on the EXIT key) in order to inspect the contents of the stack

(and in fact any register).

The following sequence invokes the show command which will immediately

display the X register.

Use the scroll down key to show the next stack register in the set (ie: Y)

And keep scrolling if you want to in order to inspect all 12 stack and special

registers. Armed with this debug information � you would almost certainly be able

to solve any problem with the programs operation

g SHOW

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 134 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

134

Simple Counting Program � showing a dynamic Alpha display
A very simple counting program � which illustrates the use of a dynamic alpha

display, would work as follows:-

LBL �LP1�

Setup alpha

LBL A

1

+

Pause

GTO A

This program takes whatever is in the X register, adds one to it, pauses and then

loops back to the start. The pause is what we will explore here. A simple alpha

command called VWα+ can be used to allow us to see the contents of both the

alpha register and the X register. Execution continues immediate after the display

has been updated. We will set the alpha register to show the word �COUNTING�

before the program runs.

Start by instructing the calculator to find the next free space for a new program,

and then switch the calculator from run into program mode.

Now create a new global label called LP1. This will be the name our program will

use. Note that the digits 0 and 1 are two special cases when running in alpha

mode � which are obtained by f shifting the respective key (0 or 1)

Now clear the alpha register for the first of our prompts.

With the alpha register cleared, we are now going to fill the alpha register with

the string �COUNTING�. We start by typing the  character to switch into alpha

entry mode. Note the way the display now shows the input annunciator

Next instruct the calculator to compress the first three alpha characters we type

into one instruction (ie: COU). We signal we want that compression by typing the

alpha sequence one more time. Note how the left hand now shows a new

instruction called alpha with a start quote.

C O U

f α

f α

h P.FCN CLα ENTER

h GTO . . h P/R

f LBL ENTER L P 1 f

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 135 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

135

Note that the INPUT annunciator is still showing � which means we are off course

still in alpha mode. Hit the ENTER key to conclude that mode now.

Now that the alpha register is setup with its fixed string �COUNTING�, we need to

define a label (which we can loop to) and add the simple math. Note we will use

one of the local hotkey labels A.

Now insert the VWα+ command by selecting it in the catalogue and then hitting

ENTER. VWα+ will then prompt for an argument that can be numeric (for a

register value) or it can use temporary alpha mode to accept a letter designated

as one of the 12 stack registers namely X,Y,Z,T,A,B,C,D,I,L,J and K. This

argument defines what numeric value is seen.

In this case we want to view the X register so in order to switch VWα+ into

temporary alpha mode we press the ENTER key a second time at which point the

display will show a small �s� to signify special registers.

After that we type the X key to signify that we want to view the X register. This is

broken this down into two steps so you can see the intermediate display.

Note this is the letter X key (not the multiply key) � signifying stack register X.

With the X register now momentarily displayed � loop back to the math part of

the loop defined by local label A

X

h P.FCN ENTER VWα+ ENTER

+

1

ENTER

f LBL A

N G ENTER

f α

N T I

f α

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 136 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

136

Use the following key strokes to execute the counting program

Counting Program illustrating Loop Control
Even though this counting program is crude, it serves to demonstrate the

principal of looping � albeit indefinitely. We could modify this program to loop a

fixed number of times using one of the set of loop control instructions. A suitable

example is the Decrement and Skip command known as �DSE�. This command

has an argument r linked to it and which identifies a register. The register is filled

with a value used to define the loops starting / current value, its stopping value,

and the delta value applied to the counter after each iteration. The contents of

register r has the following format

Assuming register r contains a number in this format, then when DSE executes it

decrements r by integer ii, and skips the next instruction if cccccc <= fff. Note

that if register r doesn�t contain a fractional part, then the function defaults to

fff=0, and defaults to ii=1. Obviously neither fff nor ii can be negative and so DSE

only makes sense when cccccc > 0

We will modify our counting program by firstly writing a sensible starting value

into some register, and then adding the DSE instruction before the jump on the

last line as follows

LBL �LP1�

Setup alpha

LBL A

1

+

Pause

DSE r

GTO A

STOP

Note
1. Hitting the EXIT key at any time will terminate the program

2. Running this on the PC emulator will run, but the display will be updated so quickly it

will be virtually unreadable. A physical calculator is slow enough so that the display is

clearly visible.

EXIT

XEQ L P ENTER 1 f

h GTO A

cccccc.fffii Reg r =

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 137 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

137

When the register r reaches it stop condition � the GTO A instruction will be

skipped, and the program will stop. We will (randomly) use register 5 as our loop

control register.

The programs GTO instruction is sitting on step 39. Given we want to insert the

new DSE instruction directly before that instruction, use GTO to position the

program pointer to step 38 before we switch into program mode.

Position the program pointer and then switch the calculator from run into

program mode.

We will allow the loop to count from 999 to 0, in increments of 1 � which means

cccccc=999, fff=0 and ii=1 � giving the register contents of 999.00001. So before

we execute the modified program write the counter value into register 5

Now run the loop controlled program clearing the X register before we start (so

that the final count value in X makes some degree of sense).

Keep in mind that unlike our first example counting program this modified

program will exit after 999 loops. That means that the alpha register will remain

on when the program exists. Note that the P.FCN catalogue command αOFF will

switch the alpha display off whenever you require.

One the program is finished, the resulting display will be:

XEQ L P ENTER 1 f 0

STO 05 999.00001

EXIT

f DSE 05

h GTO . 38 h P/R

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 138 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

138

Local Data - Variables
Those readers with programming experience will be familiar with the expression

�local variable�. The idea being that it is useful for a function to have access to a

local variable or variables which remain in scope during a functions execution and

which go out of scope (are lost) when the function terminates

The WP 34S offers something similar although the implementation it uses is

rather different. It is also a little tricky to use safely given the memory involved is

drawn from the subroutine return stack which is subject to dynamic change.

There are three functions involved, and one special form of notation.

Let us first look at the three functions involved

1. �LocR� n (found in the P.FCN catalogue) is the function used to allocate n

local data registers and a fixed set of 16 Boolean flags. If the argument n

is 1 to 16, then the resulting registers can all be directly accessed by STO

or RCL using the special dot notation .00 to .15. The flags are always

accessed using the dot notation .00 to .15. Note that �LocR� will allow

(under specific conditions) an allocation of up to 144 registers, but the

registers above the first 16 can only be accessed indirectly � and at the

time of writing the mechanism involved is far from clear. All the following

examples confine themselves to allocating a maximum of 16 local data

registers.

2. �PopLR� (found in the P.FCN catalogue) is the function used to de-allocate

any and all previously allocated local register data. The PopLR function

takes no arguments.

3. �LocR?� (found in the TEST catalogue) allows the user to query the current

number of allocated local data registers

When the LocR function is executed (either immediately on the keyboard, or

within the body of a program) the required number of registers are pushed onto

the subroutine return stack. So long as the stack isn�t altered, the user will be

able to use the special dot notation to access any of these registers. As soon as

the PopLR function is executed the memory linked to these data registers will be

cleared.

Let us now try a worked example. First let�s allocate a total of 16 local data

registers using the LocR command in the P.FCN catalogue

With the 16 local data registers allocated, let us now write the value of Pi into

local data register 8 (remember we use the special dot notation to access these

registers using .00 to .15). After this we will clear the X register � as follows:-

Note
Although the following functions can all be used fully from the keyboard, the implementation

masks the fact that these functions can and will fail when apparently unrelated events take

place (an example below will make this clear).

h P.FCN L LocR XEQ 16

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 139 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

139

Next read back the local data register 8

And the display will show the value of Pi. Observe that if you were to now open

the STATUS command (see above examples), and scroll down to the 2
nd

 page

(press the down scroll key one time), you would see the number of allocated local

data registers prefixed by the word �Loc�

To clear the allocation of any/all local data, simply execute the �PopLR� function

Local Data - Flags
Whenever local data is successfully allocated with the LocR command (regardless

of how much) the system will automatically create a fixed set of 16 Boolean flags

which can each be set, cleared and tested (see command FC? which is used to

test if a flag is clear or the three commands FC?C, FC?F and FC?S which are used

to clear, flip or set the flag directly after the test is performed. Similarly the FS?

command is used to test if a flag is set and the three commands FS?C, FS?F,

FS?S are used to clear, flip or set the flag directly after the test is performed).

Flag addressing is the same as when addressing local data variables using the

same dot notation (.00 to .15). For example to set flag 8 we would use.

Just like variable � flags are all lost as soon as local data is cleared.

Local Data - limitations
Local data can be used quite effectively but it does have some limitations � and

all of these occur because local data is held in a dynamically allocated subroutine

return stack. If the SBR stack changes, then the local data can and will be lost.

. SF f 08

h P.FCN P PopLR XEQ

RCL . 08

h π STO . 08 h CLx

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 140 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

140

Consider the following example. Let us repeat the steps above, in the sense of

first allocating 16 local data registers, and then storing Pi in register 8.

With the 16 local data register allocation made, let us now write the value of Pi

into local data register 8 (remember we use the special dot notation to access

these registers using .00 to .15). Then clear the X register

Next read back the local data register 8 to confirm that Pi has been written

Now execute the �RTN� function and try to read local data register 8 a 2

nd
 time.

You will find that immediately following the execution of the return (RTN)

command the calculator interface will refuse to allow the entry of anything

following the period (.) character. As soon as the return (RTN) command is

executed, the stack will have been reset and any and all local data cleared. At

that point (for example) executing the �LocR?� query command in the �TEST�

catalogue will confirm that zero registers remain allocated.

This example is a little contrived, because these local data functions really come

into their own when executed within the body of a program and actually don�t

make a lot of sense when executed immediately via the keyboard.

When return (RTN) instructions are executed within the body of a program the

code overseeing program execution will first clear the most recent allocation of

local data, leaving any previously allocated local data ready for use. It will then

return control to the calling function.

Note
Nonetheless, the example does highlight how these functions can and will fail if handled

without care.

RCL . g RTN

Note how the calculator will

now refuse to allow the entry

of any number after the

period is pressed

RCL . 08

h π STO . h CLx 08

h P.FCN L LocR XEQ 16

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 141 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

141

This means that local data can be allocated safely within nested function calls.

Consider the following simply three function pseudo code designed to pass three

values and to sum the three (ending up with the value 10 + 21 + 32 = 63).

Figure 6 � Use of local data within nested functions

Function (A) first allocates one local data register (which will be accessed using

the dot notation .00). This function simply writes 10 into the local data register,

and then executes (ie: calls) function (B).

Function (B) first allocates one local data register (which will be accessed using

the dot notation .00) but which will not conflict with the same previously allocated

local data register in function (A). Function (B) writes 21 into this local data

register, and then executes (ie: calls) function (C).

Function (C) simply writes 32 into the X register, and returns control to function

(B) which then reads the contents of its local register (previously loaded with 21)

and adds this to the X register (21 + 32) � leaving 53 in the X register. Function

(B) then returns to function (A)

Function (A) reads the contents of its local register (previously loaded with 10)

and adds this to the current X register (53 + 10) leaving 63 in the X register.

Function (A) then executes a RTN leaving the final result in the X register.

When function (A) executes its final return instruction, all remaining local data is

cleared.

Function A

 LocR 1

 10

 Sto .00

 XEQ B

 Rcl .00

 +

 Rtn

Function B

 LocR 1

 21

 Sto .00

 XEQ C

Rcl .00

 +

 Rtn

Function C

 32

 Rtn

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 142 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

142

Part 5

WP 34S

Fractions

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 143 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

143

Fractions
A mixed fraction has the general form:-

Figure 7 � A Mixed fraction

There are three types of fractions � a proper fraction has a numerator that is

smaller than the denominator. An improper fraction is one where the reverse is

true and a mixed fraction is made up from a whole number part plus a proper

fraction (as shown in the diagram above).

Entering a fraction into the WP 34S involves typing the decimal point twice � first

after the whole number (integer) part, and second between the numerator and

denominator.

For example to enter 2
3
/8 use the following key strokes

To enter
5
/8 use the following key strokes

To revert back to floating point mode, simply use the H.d command

Note
On some HP calculators such as the HP 32Sii, you could enter a fraction such as

5
/8 using the

shortened key sequence 5..8. This key sequence won�t work on the WP 34S.

a
b
/c

Integer portion

Numerator

Denominator

f H.d

. 5 . 8

2 . 3 . 8

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 144 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

144

Fraction modes � how the display works
To switch from floating point mode into fractional mode, the calculator provides

two keys at the top right of the keyboard. Both of these keys switch the calculator

from a floating point mode into a fraction mode but the first key displays mixed

and proper fractions (a
b
/c) and the second displays improper fractions (

d
/c).

Improper fractions have a numerator larger than the denominator for example

48/23 and no whole number portion.

Converting a floating point number to a fraction is often an approximation.

Sometimes the conversion will be exact but many times it will be slightly larger or

smaller than the floating point value held in the calculator. The display announces

this information using three guides. Consider the following three numbers�

Exact fraction conversions
1.5 will convert precisely to 1

1
/2. Enter this proper fraction using the following

key sequence

As this fraction can be converted exactly, the double line (equals) annunciator is

displayed.

 Integer portion Numerator Denominator

Note the special symbol used to separate the numerator and denominator

1 . 1 . 2 ENTER

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 145 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

145

Inexact fraction conversions
Set the calculator to work in proper fraction mode (a

b
/c) � and then consider the

fraction
34

/12. Internally this improper fraction will be evaluated as

2.83333333333 and then converted to the proper fraction 2
5
/6. The calculator

will compare the converted fraction against the floating point value to the limit of

its precision and will confirm if the fraction is greater than, or less than the

floating point number. In this case, the fraction is (marginally) greater than the

floating point number. Consequently the display will show the greater than

annunciator �Gt�:-

The same idea applies when dealing with a fraction such as
34

/11. Internally this

improper fraction will be evaluated as 3.09090909091 and will convert to the

proper fraction 3
1
/11. The calculator will compare the converted fraction against

the floating point value to the limit of its precision and will confirm that the

fraction is slightly less than the floating point number. Consequently the display

will show the less than annunciator �Lt�:-

Accuracy Indicators
As shown above, the accuracy of the fractional display compared to the floating

point value held by the calculator is confirmed by the following annunciators

The displayed fraction exactly matches the fractional part of the internal

floating point number

The displayed fraction is slightly more than the fraction part of the

internal floating point number. Note that the numerator difference will be

no more than 0.5

The displayed fraction is slightly less than the fraction part of the internal

floating point number. Note that the numerator difference will be no more

than 0.5

In order to help explain this limit of accuracy in slightly more detail � assume for

a moment that we fix the denominator of all fractions to be a particular value. We

can do this using a pair of commands in the MODE catalogue called �DENMAX�

and �DENFIX�. When DENFIX is executed, it fixes the denominator to whatever is

defined by DENMAX. The objective here is to artificially restrict the accuracy of

the calculator so that we can then see the limits of accuracy.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 146 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

146

Use the following key strokes to fix the denominator to 16. Note that the DENMAX

command expects the new denominator to be in the X register before it is

invoked.

First set the maximum possible denominator to 16

Then execute the DENFIX command to make 16 the only denominator allowed.

Now, consider the band of values from
6.5

/16 through to
7.5

/16

Note
Following this example - don�t forget to restore the default DENMAX value (using X=0) and

also to switch the denominator fixed mode off by using the DENANY command. See the

command sequence on the next page�

h MODE DENFIX D XEQ

h MODE 16 DENMAX D XEQ

7
/16

()

6.5
/16

()

7.5
/16

()

When the denominator is fixed to 16 then a

value such as 0.437599 will convert to
7
/16.

As this is slightly less than the floating point

value held in the calculator, the WP34S will

show the less than annunciator �Lt�

When the denominator is fixed to 16 then a

value such as 0.437401 will convert to
7
/16. As this is slightly more than the floating

point value held in the calculator, the WP 34S

will show the greater than annunciator �Gt�

When the denominator is fixed to 16 then 0.4375 will convert to
7
/16 which is an exact match to the floating point value

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 147 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

147

Use the following key strokes to restore DENMAX to its default value.

Use the following key strokes to switch off denominator fixed mode.

Fraction Mode � Rounding
The WP 34S rounding function RND (secondary function on the 0 key) will round

any fraction value which is slightly more or less than the floating point value. In

effect rounding will make the fraction and the floating point values equal, and the

equality symbol will replace either Gt or Lt.

Fraction Mode � Limitations
The WP 34S fraction mode will handle numbers with absolute values that are

greater than 0.0001 and less than 100000. The maximum denominator is 9999.

Larger fractions
A displayed fraction may be too long to fit all digits into the display. By the time

the numerator and denominator are displayed, the integer portion may end up

being truncated. In order to cope with this, the calculator has a special

annunciator used to signal that the integer portion has been truncated. You can

then use the feature we looked at earlier to view all digits in the mantissa.

With the calculator using proper fractions (a
b
/c) consider finding e raised to the

power 9. We would use the following key strokes

The resulting display estimates the fractional part of the result as 153/1823 and

the integer part as 8103. As the combination of integer, numerator and

denominator is too long for the display, the calculator truncates the integer

portion to its two least significant digits and flags the fact with a small arrow head

symbol at the bottom left

Note

Therefore the fraction example quoted in the HP 32Sii user guide which converts e
14

 to a

fraction won�t work on the WP 34S because the absolute value of e
14

 exceeds 100000 (e
14

 =

1.1026 x 10
6
).

h MODE DENANY D XEQ

f a
b
/c 9 f ex

h MODE 0 DENMAX D XEQ

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 148 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

148

Use the special horizontal scroll key ◄(to view the truncated part. After pressing

◄(the entire mantissa and exponent will be visible

As explained earlier (Viewing All Mantissa Digits section), the mantissa display is

a full display of 16 digits. The digits start at the top left and run for four places,

and then continue on the left hand side of the next line down.

If the display showed an exponent of zero this would mean that the decimal point

would sit between the first two digits on the top line. In this case, the exponent is

actually 3, which means the decimal point will sit between the fourth digit (3) and

the fifth digit (0).

As our fraction display showed 03 in its truncated integer portion then after

viewing the entire mantissa we know that the full integer portion is 8103.

Consequently the full fraction will be 8103
153

/1823 (and we also know that this

estimation will be slightly more than the floating point value held in the calculator

because the display is showing the �Gt� annunciator).

Controlling the fraction display format
There are four important commands located in the MODE catalogue called

DENMAX, DENANY, DENFAC and DENFIX which together allow the user to control

the precise display of fractions. We look at each of these next.

If after using these modes you wish to return to the default fraction mode in the

calculator, use the following two key sequences

h MODE DENANY D XEQ

h MODE 0 DENMAX D XEQ

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 149 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

149

Setting the maximum denominator
For any fraction the denominator is selected based on a mode setting value in the

calculator.

The calculator can work with any denominator up to a maximum value of 9999.

The DENMAX command in the MODE catalogue can be used to control the

maximum denominator that the calculator is allowed to use. For example to force

the calculator to use denominators no greater than 16, the key strokes required

would be�

Note that if you write 0 into the X register before calling DENMAX then the

calculator will set the default denominator (9999). Alternatively, if you write 1

into the X register before calling DENMAX then the current DENMAX setting will

be returned to the X register after the command executes.

Setting the default fraction mode � max precision
The MODE catalogue function called DENANY sets the calculator to work with the

default fraction format having maximum precision. Any denominator up to the

value set by DENMAX can appear. For example if DENMAX=6 then setting

DENANY allows denominators of 2,3,4,5 and 6. If DENMAX=0 then any

denominator up to 9999 is permitted.

Setting the fraction mode to employ factors
The MODE catalogue function called DENFAC sets the fraction mode to use only

integer factors of the maximum denominator. For example if DENMAX=12 then

setting DENFAC will allow denominators 2,3,4,6 and 12. Setting DENMAX=0 will

permit any factor of 9999 to be used as the denominator.

Setting a fixed fraction denominator
The MODE catalogue function called DENFIX sets the fixed fraction mode where

the one and only denominator allowed is the value defined by DENMAX. If

DENMAX is set to its special default value of 0, then the single fixed denominator

permitted will be 9999

Using fractions in programs
You can type fractions into programs in the normal way (a.b.c or ..b.c) and when

entered in that format, program execution will force the display mode to change

to fraction mode.

h MODE 16 DENMAX D XEQ

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 150 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

150

Part 6

WP 34S

Complex Mode

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 151 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

151

Complex modes of operation - introduction
The WP 34S supports many complex operations. The CPX key (top right) is used

as a prefix for calling complex functions for example finding the complex

reciprocal requires the following key strokes (assume the local label B is currently

assigned as a program label)

As soon as you press CPX, the calculator prepares for a complex operation � and

displays a small c annunciator as follows:-

Once the operation is completed (in this case f, reciprocal) the display confirms

that a complex result is present by a larger C in the top left.

Entering such a command in program mode will show the command with a top

left �c� annunciator in the program listing � as in this example where Step 2 of

the program has had a complex cosine instruction inserted. The resulting display

would appear as:-

The WP 34S has operations for complex arithmetic (add, subtract, multiply,

divide), complex trigonometry (Sin, Cos, Tan, Sin
-1

, Cos
-1

, Tan
-1

) and the

mathematic functions 1/x, ABS, FP (fractional part), IP (integer part), RND, x!,

x
2
, x

3
,

2
√x,

3
√x, +/-, log and exponential functions with bases 10, 2 and e as well

as hyperbolic trig functions (and the inverses).

f 1/x CPX

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 152 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

152

Complex mode - extra function catalogue
The WP 34S provides access to a range of special functions that work in the

complex domain. You access these, by opening a special catalogue � and keeping

in mind the function of the CPX key (to act as a prefix for any complex

commands) you use the X.FCN button but prefixed by CPX to open this particular

catalogue of complex functions.

Complex number format
Complex functions in the WP 34S use Cartesian coordinates throughout. The

standard format is:-

x + iy.

Each complex number occupies two adjacent registers � the upper holding the

imaginary part, and the lower holding the real part. Therefore - when entering

complex values onto the stack you enter the imaginary part first (which will end

up in Y), followed by the real part (which will be in X).

For example � the complex number (1 + i2) can be converted to polar

coordinates via the following key sequence

The polar coordinates are returned with the magnitude r in the X register, and the

angle Theta in the Y register (in this case r=2.2361, and Theta = 63.435
o
).

Note
You can always convert to a polar view of a complex number, but remember to always

convert back to Cartesian form before performing any complex functions.

CPX X.FCN h

g 2 ENTER 1 R P

1 2
+X

+i

1

2

-X

-i

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 153 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

153

Use the reverse (rectangular) function to revert to Cartesian coordinates.

Entering complex numbers and invoking complex functions
When entering a complex number, first type the imaginary part then press ENTER

and then type the real part giving

x + iy.

Complex numbers are handled by entering the imaginary and real parts as

separate numbers. To enter two complex numbers, you would enter four separate

numbers. To perform a complex operation, you prefix the operation with the key

CPX.

For example to add the two complex numbers (3+i5) and (2+i4) you would use

the following key strokes

After this key sequence, the result will be stored in the X register (holding the

real part) and the Y register (holding the imaginary part). The display initially

shows the real part, but flags that this is a complex result with a C in the top left.

The user would X exchange Y to read the imaginary part (or use roll ie: R)

The real part of the result is shown first

and the calculator confirms it is a

complex result via the C at the top left.

Pressing the X exchange Y key then

reveals the imaginary part of the sum.

i.e. (3+i5) + (2+i4) = (5 + i9)

5 ENTER 3 ENTER 4 ENTER 2 CPX +

f R P

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 154 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

154

The complex stack
The complex stack is simply the original X,Y,Z,T stack split into two double

registers capable of holding two complex numbers i.e.

(Z1x + i Z1Y) and (Z2x + i Z2Y)

Looking at the stack itself � the format of our standard RPN real mode stack is

shown on the left � consisting of the four registers X,Y,Z and T.

When dealing with complex numbers we can either store Z1 in the first two stack

registers X and Y � in which case functions operating on just one complex number

for example Sin, Cos, Tan and
1
/x � which can be generally written as

c
f(Z1), will

leave the single complex result in the same two registers X and Y.

Alternatively we can store the combination of two complex numbers Z1 and Z2 in

the stack using registers X and Y to hold Z1, and registers Z and T to hold Z2. In

which case functions operating on two complex numbers at a time for example

add, subtract, multiply, divide and y
x
 � which can be generally written as

c
f(Z1,Z2)

will leave the single complex result in the X and the Y register.

Putting this more formally the WP 34S works generally as follows. If some

arbitrary real function f operates on�

 �one real number x only, then its complex brother
c
f will operate on

the complex number x +iy (ie: the real part will be in stack register x

and the imaginary in stack register y)

 �a single register eg: Rnn, then its complex brother
c
f will operate on

the pair of registers Rnn and Rnn+1

 �x and y, then
c
f will operate on x,y,z and t

In the case where a real function using a single argument replaces stack register

x by the result of f(x) then by contrast the same one argument complex operation

will replace stack register x by the real part of the function, and will replace stack

register y with the imaginary part of the complex function
c
f(xc)

Real

Stack

Complex

Stack

Z2

Z1

Complex

Result

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 155 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

155

Similarly a real function which uses two arguments will generally replace stack

register X with the result of f(x,y). By contrast a two argument complex operation

will replace stack register X by the real part of the function
c
f(xc,yc), and will

replace stack register Y with the imaginary part of the complex function
c
f(xc,yc)

Complex Operations
Use complex operations just as you would real operations, but precede the

operator with the CPX key

Operation on one complex number
To perform an operation with one complex number

1. Enter the complex number Z, composed of (x+iy), by keying in y ENTER x

2. Select the complex function

To compute Use keystrokes

Change sign, -z

Inverse

1
/z

Natural Log, Ln z

Natural antilog, e

z

Sin z

Cos z

Tan z

*1

Use the alternative key strokes if the �B� key is used as a label in the current program

Note
Using complex number operations on the WP 34S doubles the memory requirement

compared to real operations. However � it is worth keeping in mind that the stack size of the

WP 34S can be optionally extended from four to eight registers (see the function SSIZE8,

and its complement SSIZE4 in the MODE catalogue). Setting a stack size of 8 means the

calculator has a stack capable of holding four full complex numbers.

CPX TAN f

CPX COS f

CPX SIN f

CPX eX f

CPX LN g
N

CPX 1/x CPX 1/x
*1 Or� f

CPX +/-

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 156 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

156

Operation on two complex numbers
To perform an operation with two complex numbers

1. Enter the first complex number Z1, composed of (x1+iy1), by keying in y1

ENTER x1

2. Enter the second complex number Z2, composed of (x2+iy2), by keying in

y2 ENTER x2

3. Select the arithmetic function

To compute Use keystrokes

Add Z1 + Z2

Subtract Z1 - Z2

Divide Z1 ÷ Z2

Multiply Z1 x Z2

Power y

X

*1

Use this alternative key strokes if the �C� key is used as a label in the current program

CPX yX CPX yx *1 Or� f

CPX ×

CPX ÷

CPX -

CPX +

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 157 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

157

Part 7

WP 34S

Unit Conversions

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 158 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

158

Unit conversions - introduction
HP calculators of old have always included a useful range of unit conversions.

These are functions which can be used to convert one measurement type or unit

to another linked type.

For example pressure can be described in bar, or in pounds per square inch.

Similarly numbers could be binary or hexadecimal, length could be metric or

imperial and temperature could be in degrees Fahrenheit or degrees Centigrade.

It is useful to be able to convert one to the other

Immediate Conversions
The WP 34S provides a small subset of quick handy conversions using the right

arrow key (top right of the keyboard). The following eight conversions are

possible using this �quick� mechanism.

To convert Use keystrokes

Assuming that the X register contains a value of

decimal hours or degrees this will converted X into the

format

hhhh
o
 mm� ss.dd�

Assuming the X register contains a value in the format

hhhh
o
 mm� ss.dd�, this function converts to decimal

hours / degrees.
Based on whatever angular mode is active (radians,

gradians or degrees) this function converts the

contents of the X register to degrees.
Based on whatever angular mode is active (radians,

gradians or degrees) this function converts the

contents of the X register to radians.
Based on whatever angular mode is active (radians,

gradians or degrees) this function converts the

contents of the X register to gradians.
Temporarily converts the integer portion of the X

register into binary base 2 until the next keystroke

(when the X register contents will revert to their value

before the conversion)

Temporarily converts the integer portion of the X

register into octal base 8 until the next keystroke

(when the X register contents will revert to their value

before the conversion)

Temporarily converts the integer portion of the X

register into hexadecimal base 16 until the next

keystroke (when the X register contents will revert to

their value before the conversion)

Note
Observe that three of these conversions are temporary (to-binary, to-octal and to-

hexadecimal). After the conversion is displayed in the X register, pressing any key will cause

the conversion display to clear.

 16 g

 8 g

 2 f

 GRAD g

 RAD g

 DEG g

 H.d f

 H.MS f

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 159 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

159

Functional based conversions
The WP 34S provides a substantial number of conversions within the CONV

catalogue (top right of the keyboard). Navigation works in a similar way to all the

other catalogues we�ve used thus far with two interesting differences. First the

conversion process is immediate. Second there is a handy key stroke which

inverts (ie: undoes) any conversion and which closes the catalogue

Enter 100 into the X register and invoke the CONV catalogue using the following

key strokes

The display will then show the immediate conversion of the value in the X register

using the currently selected conversion function � which happens to be centigrade

to Fahrenheit ie:-

If you click the backspace key or the exit key, then the conversion (in this case
o
C

to
o
F) will be cancelled and the CONV catalogue closed (at which point the X

register will once again contain 100.0000).

Note also that if you scroll down through the list of conversions using the scroll

arrow (▲▼) keys, each new conversion runs immediately. So for example hitting

the down arrow will take you to the following alternate conversion (which is

actually the inverse)

We started with 100 degrees in X, each conversion took the original X content

and converted it to
o
F in the first conversion, and to

o
C in the second.

Note
For this example � keep in mind�

1. 100
o
 centigrade is approximately 212

o
 Fahrenheit

2. 100
o
 Fahrenheit is approximately 37.7778

o
 centigrade

h CONV 100

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 160 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

160

Accepting a Conversion
To accept the conversion so that the source value in the X register is changed

simply press ENTER or XEQ.

Combining Conversions
The tyre pressure of my vehicle is 28psi � what is the equivalent pressure in bar

First convert the tyre pressure from PSI into pressure absolute (Pa). Note that we

can easily find this conversion by typing the first two letters (PS) of the

conversion, and press enter to accept

The resulting display will show the 28 PSI converted to Pa

Next convert the PA value to BAR using the Pabar conversion. With the

catalogue open, press the �P� letter to select all conversions starting with P, and

then press the scroll down key once to get to the PA to BAR conversion. Press

ENTER to accept.

The resulting display will show the 193053.1960Pa converted to bar

So a tyre pressure of 28PSI is roughly equivalent to 1.9BAR

h CONV P ENTER ▼

h CONV 28 P ENTER S

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 161 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

161

Quick conversion inversion
With the calculator setup as above, if you wished to invert the above BAR

pressure and get back to the Pa pressure, there is a special key stroke trick you

can use. First select the right conversion in the open catalogue, and then press

the key sequence f B. This will perform the inverse of the selected conversion.

In this case - first open the CONV catalogue, and note that it automatically opens

showing the previously invoked conversion Pabar

To invert this conversion (and close the catalogue and leave the previous result

(Pa) in X), then simply use the following key strokes

f B

h CONV

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 162 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

162

Part 8

WP 34S

Constants

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 163 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

163

Constants � Introduction
The WP 34S has a very rich set of constants. The complete set of constants is

located in the CONST catalogue and accessed in the normal way. For example to

find the value of Avogadro constant NA and to place it in the X register � use the

following keystrokes.

To find the Euler-Mascheroni Constant which uses the Greek letter gamma, use

blue shift G to highlight all constants starting with the Greek letter equivalent of

�G�. Press ENTER to insert the constant into the X register

Note that within this catalogue, Eulers number constant e (2.718) should not be

confused with the charge of an electron (e). Eulers is assigned the name eE in the

CONST catalogue.

Use of constants in the complex domain
Note that you can prefix the constant catalogue with the CPX key in order to

enter the constant into X, and a zero into Y.

Would place 2.7183 into the X register, and zero into the Y register

h CONST E ENTER CPX E

h CONST G ENTER g

h CONST N ENTER

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 164 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

164

Part 9

WP 34S

Statistical Functions

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 165 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

165

Statistical Functions - Accumulations
Pressing the + key computes certain important sums and products of the input

values provided in the X and Y registers. Before you start to calculate

accumulations with a new set of X, Y values you first need to clear the

accumulation registers using the following keystrokes

Then do the following for each pair of X and Y values in your data set

1. Key in the Y value

2. Press ENTER

3. Key in the X value

4. Press +

If the problem you�re working on only involves one variable (x) instead of two

(x,y) then the procedure for entering values is similar with one important point to

note. Before you start, clear the statistical storage and clear the Y register to

zero. Then start entering all the values in the list. You must clear the Y

register because a non zero value in Y will cause a domain error for some

one-number statistical calculations.

Each time you press + a new data item is added to the list of values in the

calculator and the index of that item is shown in X starting from index 1.

Deleting and Correcting Data
If you key in the incorrect value, and have not yet pressed + then simply clear X

and rekey. If you�ve already pressed +, then press - (note that the index in the

X register will reduce by 1), rekey your values and press +.

Finding the Mean
Pressing the f shifted x key�

�computes the arithmetic mean (average) of X and Y values accumulated in the

statistical registers. When you use this function, the following occurs.

Note
Remember, if local label A is not used in the current program then the A key will be assigned

the + function automatically. If the key is being used by a local program label, then you can

still access the + function using h + (a secondary function of the + (add) key)

g CL∑

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 166 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

166

1. The contents of the stack registers are lifted.

2. The mean of the X values is calculated using the data accumulated in the

sigma registers according to the formula x= x / n. The resulting value

appears in the displayed X register

3. The mean of the Y values is calculated using the data accumulated in the

sigma registers according to the formula y= y / n. The resulting value is

available in the Y register of the stack.

Consider the following example. The table below shows a chart of daily high and

low temperatures for a winter week somewhere in the world. What are the

average high and low temperatures for the week selected?

 Sun Mon Tue Wed Thu Fri Sat

High 6 11 14 12 5 -2 -9

Low -22 -17 -15 -9 -24 -29 -35

Use the following keystrokes to calculate the averages

Keystrokes Display

Display will show what was in the X

reg

6 ENTER 22 +/- + 

11 ENTER 17 +/- + 

14 ENTER 15 +/- + 

12 ENTER 9 +/- + 

5 ENTER 24 +/- + 

2 +/- ENTER 29 +/- + 

9 +/- ENTER 35 +/- + 

 (the average low temp)

 (the average high temp)

The average of the low temperatures is -21.5714, and the average for the higher

temperatures is 5.2857.

Standard Deviation
Pressing the S key (secondary function of digit 5) computes the standard

deviation (a measure of dispersion around the mean) of the accumulated data.

The formulas used by the WP 34S to compute SX, the standard deviation of the

accumulated x values, and SY, the standard deviation of the accumulated y values

are�

f X

X Y

g CL∑

SX =

n x
2
 � (X)

2

n(n � 1)

SY =

n y
2
 � (y)

2

n(n � 1)

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 167 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

167

These formulas give the best estimate of the population standard deviation from

the sample data. Consequently the standard deviation given by these formulas is

termed by convention the sample standard deviation

When you press g s to compute the standard deviation the following happens

1. The stack lifts

2. The standard deviation of the X values (SX) is calculated using the data

accumulated in the sigma registers using the formula shown above. The

result is shown in the X register.

3. The standard deviation of the Y values (SY) is calculated using the data

accumulated in the sigma registers using the formula shown above. The

result is held in the Y register.

Example: A new test is developed that measures the bearing reliability of

shopping trolley wheels. To evaluate its effectiveness the test is administered to

1000 trolleys in a store in London and then 10 of the 1000 tests are taken, and

an estimate made of the standard deviation of all the results from the sample of

10.

The scores for the 10 samples are: 52, 38, 97, 81, 64, 78, 99, 26, 33 and 12.

What is the standard deviation?

Keystrokes Display

0 ENTER  (clear the Y register)



52 + 

38 + 

97 + 

81 + 

64 + 

78 + 

99 + 

26 + 

33 + 

12 + 



Based on a sample of 10, the standard deviation estimate for the bearings failure

rate on 1000 shopping trolleys is 30.4923.

When the data constitutes not just a sample of a population but rather all of the

population, the standard deviation of the data is the true population standard

Note
Did you see �Domain Error� when you tried to compute the standard deviation? Refer to the

notes above for one number functions � and note that a nonzero value in the Y register

(before you started to enter the data) is the problem. Make sure you clear the Y register

before starting the calculation.

g S

g CL∑

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 168 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

168

deviation (denoted σ). The formula for the true population standard deviation

differs by a factor of [(n-1)/n]
½
 from the formula used by the WP 34 S function.

The difference between the values is small, and for most applications can be

ignored. Nevertheless, if you want to calculate the exact value of the population

standard deviation for an entire population you can easily do so with just a few

keystrokes. Simply add (using the + key) the mean (x) of the data list to the

data list itself, and then compute the standard deviation using S. The result will

be the true population standard deviation of the original data.

In the previous example we would use







The standard deviation for all results in the test is: 28.9275

Linear Regression
Linear regression is a statistical method for finding a straight line that best fits a

set of data points thus providing a relationship between two variables. After a

group of points have been entered you can calculate the coefficients of the linear

equation y=mx+c using the least squares method by using the L.R. function built

into the STATS catalogue. It goes without saying that there must be a minimum

of two data points stored in the calculator before a least squares line can be

fitted.

When you use linear regression the following occurs.

1. The contents of the stack registers are lifted

2. The slope M of the least squares line of the data is calculated using the

following equation and left in the Y register of the stack

3. The Y axis intercept C of the least squares line of the data is calculated

using the following equation and left in the X register of the stack

∑+

g S

f X

C =

∑y ∑x
2
 - ∑x ∑xy

- ∑x

n ∑x
2
 � (∑x)

2

M =

n ∑xy - ∑x ∑y

n ∑x
2
 � (∑x)

2

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 169 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

169

To obtain the slope, simple press the x exchange y key or use roll.

For example � the following table shows the consumption of barrels of oil in the

UK over the years 1945 to 1973. Find the slope and Y intercept of a least squares

solution for the consumption against time.

Year 1945 1950 1955 1960 1965 1970 1971 1972 1973

Barrels

(x10
6
)

696 994 1330 1512 1750 2162 2243 2382 2484

You could start by graphing the data as follows. Based on this you could estimate

the y=mx+c relationship which forms the best fit.

Compute the least squares solution as follows:-

Keystrokes Display



696 ENTER 1945 ∑+ 

994 ENTER 1950 ∑+ 

1330 ENTER 1955 ∑+ 

1512 ENTER 1960 ∑+ 

1750 ENTER 1965 ∑+ 

2162 ENTER 1970 ∑+ 

2243 ENTER 1971 ∑+ 

2382 ENTER 1972 ∑+ 

2484 ENTER 1973 ∑+ 

 (Y intercept)

 (slope)

So the relationship during these years has a best fit to the equation

Y = 61.1612(X) � 118290.6295

Note
As a check � consider the year (X) value of 1955. The equation predicts a consumption value

of 1279.5 barrels which is very close to the actual value of 1330.

g CL∑

X Y

h STAT XEQ L.R.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 170 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

170

Linear Estimation
With data entered into the accumulation registers a predicted value for Y

(denoted as a y) can be calculated. Similarly a predicted value for X (again

denoted as x) can be calculated.

Whereas the Y estimation is available on the keyboard (secondary function on the

6 key), the less commonly required X estimation is available within the STAT

catalogue�

For example � with the data intact from the previous problem, if you wished to

predict the demand for oil in the years 2012 and 2014, you would first key in the

value of 2012 as the known X value, and then press y

Note the display shows the prediction for the year 2012 at slightly less than 5

billion barrels.

Keystrokes Display

Similarly � if we wanted to know when the demand for oil would exceed 3500

million barrels, we would key in 3500 (the new value for y) and select the x

estimation in the stats catalogue ie:

Keystrokes Display

In other words, demand for 3500 barrels will occur sometime between 1991 and

1992.

Correlation Coefficient
Both linear regression, and linear estimation presume that the relationship

between X and Y data values can be approximated to some degree by a straight

line (linear) function.

You can use the r correlation coefficient function (a secondary function on the 6

key) to assess how well or badly your data fits a straight line. The coefficient

ranges from +1 to -1, where r=+1 means that the data falls exactly onto a

h STAT X XEQ X

3500

f ŷ 2012

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 171 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

171

straight line with positive slope. With r=-1 the data falls exactly onto a straight

line with negative slope. When r=0 the data cannot be approximated at all by a

straight line.

To calculate the correlation coefficient for the oil barrel example � use the

following key strokes

Keystrokes Display

This value confirms that the data correlates very closely to a straight line with

positive slope (as we know it does from the graph).

Normal Distribution
There are two useful functions available on the keyboard for problems dealing

with normal distributions. Ie: ф and ф
-1
. The function (ф) computes the area

under the standard normal distribution curve to the left of X. Its inverse (ф
-1
)

computes X given the area under the standard normal distribution curve to the

left of X using an iterative algorithm.

The area under the standard normal distribution curve to the left of X is a

measure of the probability or the frequency of the occurrence for all values less

than or equal to X

The number that is input to the function (ф) or returned by the inverse function

(ф
-1
) is the standard variable for the standard normal distribution. Given the

mean value μ and the standard deviation value σ of a normal distribution the

following formulas give the relation between X (the standard variable) and X� the

unstandardised variable of the problem.

The standard normal distribution has μ=0 and σ=1 as shown in the following

diagram�

Note
It is quite revealing to compare the execution time of the inverse algorithm for ф

-1
 running

on a 1978 HP32E (LED) calculator against that of the WP 34S. After a barely perceptible

delay, the result is available on the WP 34S display. By contrast the HP32E takes a full 15

seconds to compute the result (but it does have the upside of showing a vivid display on the

LED�s as it runs).

X =

X� - μ

σ

X� = σX + μ

g r

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 172 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

172

Consider this example. The distribution for final exam scores for 200 apprentices

has a mean μ=82.3, and a standard deviation σ=9.6. What proportion of the

apprentices receive passing scores of 70 or higher

First find X using the formula:

Use the key strokes

The display will show

ENTER 70 82.3 - 9.6 ÷

X =

X� - μ

σ

=

70 � 82.3

9.6

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 173 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

173

This value for X indicates that the score of interest (70) lies 1.2813 standard

deviation to the left of the mean score 82.3. Now proceed with the rest of the

problem.

Keystrokes Display

This display confirms the proportion receiving scores less than 70. We can invert

the result using the following keystrokes.

Keystrokes Display

Close to 90% of the apprentices passed the test.

Consider this alternate example. The monthly income in households in Farnham

can be described by a normal distribution with a mean of £12400 and a standard

deviation of £3850. What is the income level exceeded by the highest 10% of the

households?

Keystrokes Display

First enter the highest tenth of households

Adjust to make it the proportion less than the income level

required. This is necessary because the ф
-1
 function assumes

that the number in the X register represents the area to the left

of the standard variable.

Then calculate the number of standard deviations above the

mean income

Multiply by the standard deviation

And finally add the mean.

This result means that ten percent of the households have monthly incomes

greater than £17333.

12400 +

3850 ×

g Ф
-1

1 - X Y

ENTER 0.1

X Y 1 -

f ф

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 174 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

174

Factorial
The factorial key (!) is a secondary function on the up arrow key

The factorial function computes the product of the integers from 1 to x. Factorials

can be useful when determining the maximum number of combinations or

permutations.

For example � if you wanted to take photographs for your web site of your

product line, how many different ways could the photographer arrange the five

different products?

5! = 5 x 4 x 3 x 2 x 1

Keystrokes Display

This result confirms there are 120 different ways to arrange the five products for

photography.

5 h !

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 175 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

175

Percent of sum %∑
The percent of sum function permits you to compute the percentage that several

values are of a total, while leaving the total intact. It computes the percentage

the number in the X register is of the value for ∑x

Example � Bread is made up of 5.4 grams of salt, 172.8 grams of seeds, and

866.7 grams of flour. What is the percentage by weight of each ingredient in the

bread, and what is the total weight of the bread (before cooking, off course).

Keystrokes Display

First figure out the percentage of salt (the weight is in register A)

Now that the data is accumulated in the calculator find the

percentage of each as follows

The percentage of salt in the bread is just over half a percent.

Note
We will use storage registers A, B and C to hold temporary copies of the three values � and

the key stroke sequence above might feel a little confusing to start with when (for example)

you observe that we are using the �A� key followed immediately by the same key (but as

∑+)

When the A key is used immediately after the STO key, the calculator is in temporary alpha

mode � which means it will then directly accept the names of 9 from the 12 special stack

registers (Y,A,B,C,D,I,L,J, and K). In this context when we press �A�, the calculator knows to

store the number into the �A� stack register. Once that command is completed, the

calculator then switches out of temporary alpha mode and the next press of the A key will

invoke the default command of ∑+

Note
Assume that the keys A, B and C are NOT being used by the current program.

h STAT XEQ %∑ %

RCL A

866.7 STO C ∑+

172.8 STO B ∑+

5.4 STO A ∑+

g CL∑

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 176 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

176

Now the percentage of seeds (weight in the B register)

The percentage of seeds in the bread is just over 16.5%. Now the percentage of

flour (the weight is in the C register)

The percentage of flour in the bread is nearly 83%. Summing the three as a

check gives ++=% as we would expect.

Percentage Difference ∆%
The percentage difference key (a secondary function of the minus key) gives you

the percentage difference � that is, the relative increase or decrease between two

numbers. To find the percent difference

1. Key in the first number (typically the first number that occurs first in time)

2. Press ENTER

3. Key in the second number

4. Press g ∆%

The formula used in this function is:-

A positive result signifies an increase in value, whereas a negative result signifies

a decrease. Consider the example where a vehicle is appraised by an insurance

company in 2009 and valued at £4700. It is an appreciating asset and in 2012

the same vehicle is valued at £6500. By what percent did the value of the vehicle

rise from 2009 to 2012?

Note
Observe that when selecting the catalogue function %∑, we quickly located the relevant part

of the catalogue by typing f %

g ∆% 6500

4700 ENTER

∆% =

100 (x � y)

y

h STAT XEQ %∑ %

h STAT XEQ %∑ %

RCL C

RCL B

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 177 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

177

The vehicle has increased in value by 38.29%.

As a check note that  ×  = 

Hyperbolic Functions
The WP 34S provides a set of six hyperbolic functions.

Hyperbolic sine

Hyperbolic cosine

Hyperbolic tangent

Inverse hyperbolic sine

Inverse hyperbolic cosine

Inverse hyperbolic tangent

Note how these functions employ three key strokes, and that you only have to

press the f (or g) shift key one time in the key sequence. Hyperbolic functions are

used in the same way as ordinary trigonometric functions with one important

difference. Hyperbolic functions always assume that their input argument is

expressed in radians, and that the inverse hyperbolic functions always provide a

result in radians.

In a mountainous region of the Alps, a tram carries tourists between two peaks

that are the same height and 437 metres apart. How long does it take the tram to

travel from one peak to another if it moves at 135 meters per minute? Before the

tram latches onto the cable, the angle from the horizontal to the cable at its point

of attachment is found to be 63
o

g HYP-1 TAN-1

g HYP-1 COS-1

g HYP-1 SIN-1

f HYP TAN

f HYP COS

f HYP SIN

63
o

437m

Tram speed

135mtr/min

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 178 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

178

The travel time is given by the formula

Note how using the ENTER key after pressing TAN places two

copies of tan(63) in the stack. We need this value for both the

numerator and denominator.

Travel time between the two peaks will be marginally under 4½ mins.

To show this slightly more accurately in a format of hours, minutes and seconds,

divide by 60 (to convert it from minutes into hours) and then switch to the H.MS

display format using the following key strokes

The display confirms that at a constant speed, the tram will require 4 minutes

and 27.16 seconds to get from peak to peak.

H.MS f

60 ÷

×

÷

135 ×

g HYP-1 SIN-1

f TAN 63 ENTER

437 ENTER

g DEG

t =

437 tan(63
o
)

135 sinh
-1

 (tan(63
o
))

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 179 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

179

Part 10

WP 34S

Hardware

&

Firmware

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 180 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

180

Calculator Hardware
The calculator has a rear cover that can be removed by gently pushing upwards

to reveal the battery compartment.

Replacing the batteries
The calculator uses two 3 volt CR2032 lithium batteries. A low battery symbol

appears when the battery power is nearly exhausted (you can read the battery

voltage by using the BATT command in the X.FCN catalogue � which will return

the voltage in the X register � typically 2.8 to 3volts). Use only fresh batteries

when replacing the battery and do not use rechargeable batteries.

To install a new pair of batteries

1. Turn the calculator off (leaving it on while removing the batteries may

cause the loss of all memory contents)

2. Remove the back cover

3. Remove ONE battery (either left or right) and replace with a new CR2032

battery with the positive side facing outwards.

4. Remove the second battery and replace with a new CR2032 battery with

the positive side facing outwards.

5. Replace the back cover.

Warning

There is a danger of explosion if the batteries are replaced incorrectly.

Replace ONLY with the same or equivalent type recommended by the

manufacturer. Dispose of used batteries according to the manufacturer

guidelines. Do not mutilate, puncture or dispose of batteries in fire. The

batteries can burst or explode releasing hazardous chemicals.

Batteries

Two x CR2032

batteries. Note

the positive side

is facing outward

Flash connector

Connector used to

flash the

calculators

firmware

Reset button

Using a paperclip,

gently press the

button via this hole in

order to hardware

reset the WP 34S

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 181 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

181

Hardware reset
When the calculator is reset by pressing the small push button at the back of the

machine (see above picture) it goes through a sequence of two steps.

1. It clears everything � all memory, all variables are cleared.

2. It restores its memory using the contents of the current backup stored in

the calculators flash RAM.

To reset the device use the following steps.

1. Open the back cover

2. Using a paperclip or something similar, gently push into the plastic hole

marked reset (see picture above). Be very gentle as little or no pressure is

required.

3. Replace the back cover.

When you next turn the calculator on, the screen will remain blank for a short 2

second delay while the entire contents of flash RAM are copied into main memory.

After that, the calculator display will announce the word �Restored�.

Note
Step 2 is worthy of note here because when the machine is first purchased, the backup area

of flash RAM will be effectively clear of any data, and it will remain clear until the user

creates a backup of the contents of the machine using either the ON & STO key combination,

or the SAVE command in the P.FCN catalogue (both described in sections above).

If a backup of the machine has never been made, then unfortunately a hardware reset will

cause the restoration of an empty backup and so will result in the loss of all calculator

memory.

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 182 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

182

Calculator Firmware
The software for the WP 34S is a work in progress, and at the time of writing is

changing almost on a daily basis as features are adjusted and bugs fixed. You will

at some point need to establish what version of software you are using.

What version firmware is my calculator using?
To find out the version of firmware on your WP 34S use the VERS command in

the X.FCN catalogue. Use the following keystrokes.

As an example - a calculator running build 2620 of version 3.0 of the firmware

will show the following display. Note that the display includes a much deserved

credit to both Paul Dale and Walter Bonin � two key originators in the

development of both the hardware and firmware).

Upgrading firmware
In order to upgrade the firmware on the WP 34S, a special cable is required which

mates with the 6 pin connector under the battery cover (see the flash connector

in the diagram above). At the time of writing (May 2012) these cables are still

available but supplies are limited. Developments are being undertaken to explore

an alternate connection mechanism using a micro USB interface but this is

embryonic at this time and would involve retrofitting a micro USB to an existing

machine not already fitted.

A small number of web based companies offer a WP 34S re-flashing service with

postage costs to be borne by the customer.

Note
During the draft of this guide I used three test calculators, and flash upgraded all three

umpteen times. Aside from the fact it fixes a great many bugs in one stroke, it is also an

extremely safe process (I haven�t heard of a single instance of a user converting their

machine into a brick after flash upgrading the firmware). Keeping that veiled warning in

mind, if you live in the UK and are stuck trying to get your machine upgraded drop me a line

and we may be able to work something out. All I�d require is that you arrange and pay for

the post both ways.

h X.FCN VERS V ENTER

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 183 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

183

Subject Index

1

1COMPL · 67, 68

2

2COMPL · 67, 68

A

A · 2, 10, 17, 20, 22, 31, 33, 35, 52, 53, 54, 57, 58,

59, 60, 61, 62, 63, 67, 75, 87, 88, 89, 103, 104,
105, 106, 107, 108, 109, 110, 113, 117, 118, 122,
124, 125, 131, 134, 135, 136, 137, 141, 143, 147,
167, 175, 176, 180, 182

absolute value · 82, 147
add · 2, 44, 45, 47, 49, 61, 76, 100, 117, 127, 128,

135, 151, 153, 154, 168, 173
Addition · 21, 78, 79, 83
ALL · 10, 24, 28, 29
alpha · 10, 17, 34, 35, 52, 53, 60, 62, 63, 66, 98,

100, 103, 104, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128, 129, 134, 135, 136,
137

Alpha · 10, 17, 34, 35, 52, 53, 60, 62, 63, 66, 98,

100, 103, 104, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128, 129, 134, 135, 136,
137, 163

AND · 52, 55, 83, 84, 90, 92, 104
angular format · 31
annunciator · 74, 75, 76, 80, 82, 117, 126, 127, 128,

129, 134, 135, 144, 145, 147, 148, 151
approximate equality · 61
Archiving · 130
Arithmetic Shift · 89
Arrows · 122
ASR · 89
Automatic Memory Stack · 38

B

B · 2, 19, 22, 35, 52, 53, 59, 60, 61, 62, 63, 67, 75,

77, 81, 103, 104, 105, 107, 108, 113, 117, 124,
125, 135, 141, 151, 155, 161, 176

Backing up · 58, 59
base · 2, 12, 14, 19, 65, 67, 71, 73, 76, 77, 78, 81,

82, 83, 88, 89, 92, 93, 94, 95, 158
BASE · 66, 67, 71
batteries · 180
BC? · 91
BEG · 12
binary · 65, 67, 68, 71, 72, 73, 80, 87, 88, 89, 92,

93, 94, 95, 158
Bit Shifting · 87
Bit wise operations · 75
Branching · 103

BS? · 91
byte · 73

C

C · 2, 14, 22, 42, 45, 51, 52, 53, 58, 59, 60, 61, 62,
63, 75, 97, 100, 103, 104, 105, 107, 108, 113,
117, 124, 125, 135, 139, 141, 151, 153, 156, 168,
176, 182

Calling · 103
carry · 75, 76, 78, 79, 80, 81, 82, 87, 88, 89, 90
Cartesian · 152, 153
Catalogue · 2, 28, 33, 34, 35, 36, 37, 42, 53, 55, 58,

61, 66, 67, 68, 71, 73, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 105, 114, 118, 125, 130, 137, 138,
140, 145, 148, 149, 152, 159, 161, 163, 170, 180,
182

Catalogues · 33, 118
CB · 91
CF · 75, 77
Chain Arithmetic · 45
Chain calculations · 23
CIR · 98, 101, 103, 104, 105, 106, 107, 108, 110
circumference · 97, 98, 101, 103, 104, 105, 108,

110, 112, 115
Cl · 125
CL · 56
CLALL · 56
clear bit · 91
Clearing · 18, 42, 58
Clearing the Stack · 42
CLSTK · 42
CLx · 43
complement modes · 75
Complex mode · 151, 152
complex stack · 154
compress · 126, 127, 129, 134
CONST · 33, 35, 163
Constant Arithmetic · 48
constants · 10, 15, 106, 163
CONV · 33, 159, 161
conversions · 2, 15, 31, 33, 144, 145, 158, 159, 160
Correlation Coefficient · 170
CPX · 2, 33, 34, 66, 108, 109, 110, 121, 151, 152,

153, 155, 163
CR2032 · 180
crystal · 14, 33
cumulative statistics · 52, 55

D

D · 2, 22, 34, 36, 52, 53, 59, 60, 61, 62, 63, 75, 103,

104, 105, 107, 108, 110, 113, 117, 124, 125, 135
D.MMYYYY · 36
date · 33, 34, 36, 37
DATE · 37
DBL/ · 10, 92, 94, 95
DBLR · 92, 95
DBLx · 92, 93

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 184 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

184

decimal · 18, 24, 26, 27, 28, 29, 30, 34, 35, 36, 37,

62, 63, 65, 66, 67, 75, 97, 110, 143, 148, 158
decimal representation · 75
DECM · 65
deemphasised four bits · 73
DEG · 2
degree · 13, 31, 137, 170
degrees · 19, 31, 158, 159
delete · 97, 102, 108, 109, 110, 114
DENANY · 148, 149
DENFAC · 148, 149
DENFIX · 145, 146, 148, 149
DENMAX · 145, 146, 147, 148, 149
Denominator · 144
Direct · 54, 111
DISP · 28
display contrast · 18
display format · 24, 148, 178
divide · 49, 78, 82, 89, 92, 115, 151, 154, 178
Division · 78, 82
Double · 92, 93, 94, 95
drops · 45, 47, 48, 83, 94
DSE · 136, 137

E

edit · 97, 110, 131
EEX · 2, 31, 32, 50, 67, 108
END · 98, 101, 106
ENG · 24, 26, 28, 29
Engineering / Scientific Override · 27, 29
Engineering display notation · 26
ENGOVR · 27, 29
ENTER · 21, 23, 32, 36, 42, 43, 44, 45, 46, 48, 49,

50, 51, 60, 61, 62, 63, 82, 93, 95, 100, 108, 118,
124, 127, 131, 135, 153, 155, 156, 160, 163, 165,
166, 167, 169, 176, 178

Exact fraction · 144
EXIT · 2, 12, 17, 18, 34, 56, 57, 59, 63, 108, 118,

133
Exponents · 31

F

Factorial · 10, 174
factors · 149
Firmware · 182
FIX · 24, 27, 28, 29, 35, 62
Fixed display notation · 27, 29
flags · 52, 57, 75, 81, 138, 139, 147, 153
flash memory · 58
fractions in programs · 149

G

global · 52, 58, 98, 100, 103, 104, 105, 107, 108,

114, 126, 134
Global registers · 52, 53
GRAD · 2
gradian · 31
gradians · 31, 158
Greek · 10, 35, 118, 124, 163

Gt · 145, 147, 148
GTO · 102, 103, 105, 108, 110, 111, 114, 131, 134,

136, 137

H

H.d · 2, 12, 143
H.MMSS · 36
Hardware · 180, 181

Crystal · 14, 33
hexadecimal · 12, 65, 66, 67, 77, 78, 92, 158
horizontal scroll · 30, 69, 148
hotkey labels · 107, 135
hotkey local labels · 104, 107, 110
Hyperbolic · 10, 177

I

I · 10, 12, 13, 49, 51, 53, 59, 60, 61, 62, 63, 73, 75,
100, 113, 124, 125, 135

IBASE? · 67
improper fraction · 143, 144, 145
Indirect · 54, 55, 112, 113
Indirect program execution · 112
Inexact fraction · 145
Integer · 65, 77, 144

Modes · 74
Intermediate results · 23
INTM? · 67
invert · 83, 161, 173

J

J · 10, 53, 59, 60, 61, 62, 63, 75, 113, 124, 125, 135
Justification · 88

K

K · 10, 53, 59, 60, 61, 62, 63, 75, 113, 124, 135
Keystroke Programming · 97

L

L · 2, 10, 35, 50, 51, 53, 59, 60, 61, 62, 63, 75, 113,

124, 125, 135, 168
label · 2, 45, 98, 100, 103, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 126, 134, 135, 151, 155,
156

Larger fractions · 147
LAST X · 50, 51
LBL · 98, 100, 105, 134, 136
least squares · 168, 169
lifted · 45, 46, 166, 168
Linear Estimation · 170
Linear Regression · 168
LJ · 88
local · 57, 60, 61, 62, 103, 104, 105, 106, 107, 108,

109, 110, 111, 135, 138, 139, 140, 141, 151
Local Data · 57, 138, 139

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 185 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

185

locating catalogue functions · 35
LocR · 60, 61, 62, 138, 139, 140
Logic symbols · 123
Logical operations · 83
Logical Shifts · 87
long number displays · 69, 71
Loop Control · 136
LST X · 50
Lt · 145, 147
LZOFF · 73
LZON · 73

M

mantissa · 14, 30, 67, 147, 148
Mantissa · 30, 67, 68, 148
MASKL · 92
MASKR · 92
math symbol · 118, 119, 121, 122, 123
MATRIX · 33
max precision · 149
mean · 148, 165, 166, 168, 171, 172, 173
Memory

Access · 54, 55, 112, 113
Memory Organisation · 52
MIRROR · 92
Mixed fraction · 143
MODE · 2, 28, 33, 34, 35, 36, 53, 55, 66, 67, 68, 71,

73, 89, 145, 148, 149
Multiplication · 78
multiply · 21, 23, 31, 48, 49, 50, 60, 61, 63, 77, 92,

98, 105, 111, 135, 151, 154

N

NAND · 83, 84
NOR · 83, 85
Normal Distribution · 171
NOT · 80, 82, 83, 107
Number labels · 110, 112
Numerator · 144

O

octal · 65, 67, 78, 92, 158
One number functions · 19
OR · 24, 34, 55, 83, 84, 85, 126
Order of Execution · 49
Out Of Range Error · 55
overflow · 74, 75, 77, 78, 81, 82
Overflow · 75, 81
Overflow flag · 75

P

P.FCN · 33, 42, 58, 114, 125, 130, 137, 138
P/R · 102, 105, 108, 110
parallel · 115, 128, 130, 131
parenthesis · 13, 49
Percent of sum · 175
Percentage Difference · 176

Preferences · 10, 12, 14, 18, 19, 23, 29, 33, 34, 36,

37, 39, 40, 47, 48, 51, 52, 56, 59, 101, 102, 108,
110, 115, 125, 126, 127, 129, 130, 131, 134, 135,
138, 139, 140, 147, 154, 165, 169, 176, 177, 178,
182

PROB · 33
Program

Labels · 2, 10, 14, 17, 19, 20, 22, 31, 33, 34, 35,

36, 42, 45, 51, 52, 53, 54, 57, 58, 59, 60, 61,
62, 63, 67, 75, 77, 81, 87, 88, 89, 97, 100, 103,
104, 105, 106, 107, 108, 109, 110, 113, 117,
118, 122, 124, 125, 131, 134, 135, 136, 137,
139, 141, 143, 147, 151, 153, 155, 156, 161,
167, 168, 175, 176, 180, 182

Program Input / Output · 115
program mode · 100, 105, 106, 108, 109, 110, 111,

126, 131, 134, 137, 151
Program-Entry · 102
Programming · 97
Program-Step · 102
PROMPT · 125, 127, 128, 129, 130, 132
proper fraction · 143, 144, 145, 147
PSE · 125, 126, 128
Punctuation · 120
Punctuation symbol · 120

R

R/S · 101, 108, 114, 129, 130, 131, 132
RAD · 2
radian · 31
radians · 31, 158, 177
radius · 97, 98, 101, 115
RAM · 10, 52, 58, 59, 104, 114, 130, 181
RCL · 10, 12, 50, 51, 52, 53, 55, 59, 60, 61, 62, 108,

125, 138
reciprocals · 22
Register

A · 2, 10, 17, 20, 22, 31, 33, 35, 52, 53, 54, 57,

58, 59, 60, 61, 62, 63, 67, 75, 87, 88, 89, 103,
104, 105, 106, 107, 108, 109, 110, 113, 117,
118, 122, 124, 125, 131, 134, 135, 136, 137,
141, 143, 147, 167, 175, 176, 180, 182

B · 2, 19, 22, 35, 52, 53, 59, 60, 61, 62, 63, 67,

75, 77, 81, 103, 104, 105, 107, 108, 113, 117,
124, 125, 135, 141, 151, 155, 161, 176

C · 2, 14, 22, 42, 45, 51, 52, 53, 58, 59, 60, 61,
62, 63, 75, 97, 100, 103, 104, 105, 107, 108,
113, 117, 124, 125, 135, 139, 141, 151, 153,
156, 168, 176

D · 2, 22, 34, 36, 52, 53, 59, 60, 61, 62, 63, 75,

103, 104, 105, 107, 108, 110, 113, 117, 124,
125, 135

L · 50, 51
T · 39, 40, 42, 47, 48
X · 2, 12, 18, 19, 27, 36, 38, 40, 42, 43, 47, 48,

50, 54, 60, 62, 66, 67, 68, 73, 74, 78, 82, 83,
87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 104, 105,
111, 112, 125, 127, 128, 129, 132, 133, 134,
135, 137, 138, 140, 141, 146, 149, 153, 158,
159, 160, 163, 165, 166, 167, 168, 173, 175,
180

Y · 41, 42, 46, 47, 48, 79, 83, 88, 93, 95, 112,

113, 115, 128, 153, 154, 163, 165, 166, 167,
168

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 186 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

186

Z · 42, 48, 60, 94, 95
REGS · 53, 55, 58
Remainder · 82, 95
RESET · 56
Restored · 58, 181
Restoring a backup · 59
RJ · 88
RL · 89, 90
RLC · 89, 90
RMDR · 82, 95
Roll · 39, 40
roll down · 39, 88, 93, 100
roll up · 39
Roll up · 40
roots · 22
Rotating · 87, 89
Rotation · 90
Rounding · 147
RR · 89, 90
RRC · 89, 90
RTN · 57, 103, 140, 141
run · 2, 58, 97, 98, 101, 105, 108, 110, 126, 129,

130, 131, 132, 134, 137, 148
run mode · 98
run/stop · 2, 129, 130, 132

S

SB · 91
SBR · 52, 139
SCI · 24, 28, 29
Scientific display notation · 24
SCIOVR · 27, 29
set bit · 91
SETDAT · 36, 37
SETTIM · 10, 36
Setting Preferences · 18
SETUK · 34
SF · 75
Sigma Data · 55
sigma data entry · 22
sign of the number · 18
SIGNMT · 67, 68
SL · 87
SMODE? · 67
special characters · 118
SR · 87, 89
Stack · 38, 39, 42, 44, 46, 47, 57, 113
Stack Arithmetic · 44
Stack control · 39
stack drop · 45, 47, 48, 83, 94
stack lift · 47, 167
Standard Deviation · 166
STAT · 33, 170
Statistical functions · 10
STATUS · 56, 57, 58, 139
Status and configuration data · 52
STO · 10, 52, 53, 55, 59, 60, 61, 62, 104, 108, 138
Subroutine · 57
subtract · 49, 151, 154
Subtraction · 78, 79
SUMS · 33
Switching On · 17
Symbols · 118, 119, 120, 122

T

T · 38, 39, 40, 42, 46, 47, 48, 52, 53, 59, 60, 61, 62,

63, 75, 100, 113, 124, 125, 135, 154
T register · 39, 40, 42, 47, 48
Temporary Alpha Layout · 63
temporary alpha mode · 10, 60, 62, 125, 135
TEST · 33, 53, 61, 67, 91, 105, 118, 138, 140
test commands · 61
Testing bits · 91
time · 12, 14, 18, 19, 23, 29, 33, 34, 36, 37, 39, 40,

47, 48, 51, 52, 56, 59, 101, 102, 108, 110, 115,
125, 126, 127, 129, 130, 131, 134, 135, 138, 139,
140, 147, 154, 165, 169, 176, 177, 178, 182

TIME · 37
true population · 167, 168
truncated · 36, 37, 147, 148
Two-number functions · 21

U

UK · 12, 18, 33, 34, 169
UK mode · 18
Unit Conversions · 31
UNSIGN · 67, 68, 89
unsigned mode · 67, 68, 74, 79, 82, 89
Upgrading firmware · 182

V

VERS · 182
version firmware · 182
VIEW · 125
VW+ · 125

W

WSIZE · 67
WSIZE? · 67

X

X · 2, 12, 18, 19, 21, 23, 27, 33, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 73,
74, 75, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 97, 98, 104, 105, 108, 111, 112,
113, 115, 124, 125, 127, 128, 129, 131, 132, 133,
134, 135, 137, 138, 140, 141, 146, 149, 152, 153,
154, 158, 159, 160, 161, 163, 165, 166, 167, 168,
169, 170, 171, 172, 173, 175, 180, 182

X exchange Y · 39, 41, 69, 153
X register · 2, 12, 18, 19, 27, 36, 38, 40, 42, 43, 47,

48, 50, 54, 60, 62, 66, 67, 68, 73, 74, 78, 82, 83,
87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 104, 105,
111, 112, 125, 127, 128, 129, 132, 133, 134, 135,
137, 138, 140, 141, 146, 149, 153, 158, 159, 160,
163, 165, 166, 167, 168, 173, 175, 180

X.FCN · 33, 35, 37, 83, 84, 85, 86, 87, 88, 89, 90,

91, 92, 152, 180, 182

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

Page 187 of 187

Draft 2.06821~ Firmware: 34S 3.1 2932 ~ (www.conehead.org & cb1 at conehead dot org)

187

XEQ · 2, 34, 101, 102, 103, 107, 108, 111, 160
XNOR · 83, 86
XOR · 83, 85, 86
XTAL? · 33

Y

Y · 21, 38, 39, 41, 42, 45, 46, 47, 48, 52, 53, 57, 59,

60, 61, 62, 63, 69, 75, 79, 82, 83, 88, 93, 94, 95,
108, 112, 113, 114, 115, 124, 125, 128, 131, 133,
135, 152, 153, 154, 163, 165, 166, 167, 168, 169,
170

Y register · 41, 42, 46, 47, 48, 79, 83, 88, 93, 95,
112, 113, 115, 128, 153, 154, 163, 165, 166, 167,
168

y=mx+c · 168, 169
yx · 21, 154

Z

Z · 38, 42, 46, 47, 48, 52, 53, 59, 60, 61, 62, 63, 75,

94, 95, 113, 124, 125, 135, 154, 155
Z register · 42, 48, 60, 94, 95

End

http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/
http://www.conehead.org/

	Index	5
	Table of Figures	9
	Draft Release Change Details	10
	If you ever find yourself in an unexpected mode?	12
	Who am I?	12
	Introduction	13
	Where this document fits in and the inevitable legal disclaimer	15

	Getting Started	17
	Switching On	17
	Setting the LCD Display Contrast	18
	Entering numbers	18
	Changing the sign of the number	18
	Clearing	18
	Functions using one number	19
	Functions using two numbers	21
	Chain calculations	23

	Setting the display format	24
	Scientific display notation - SCI	24
	Engineering display notation - ENG	26
	Fixed display notation - FIX	27
	Fixed display notation – Engineering / Scientific Override	27

	Setting the number of display digits - DISP	28
	All display notation - ALL	29
	Viewing all digits in the Mantissa	30

	Setting the angular format	31
	Entering Exponents	31
	Catalogues	33
	Using catalogues to set calculator preferences	33
	Setting UK preferences	34

	Quickly locating catalogue functions	35
	Quickly locating catalogue functions with Greek letters	35
	Fixing the display to four decimal places	35
	Setting the Time	36
	Setting the Date	36
	Reading the Time from the calculator	37
	Reading the Date from the calculator	37

	The Automatic Memory Stack	38
	Initial Display	38
	Stack control - manipulation	39
	
	Roll Down (and Roll Up) Key	39
	Exchanging X and Y	41
	Clearing the Stack	42

	The ENTER Key	42
	Stack Arithmetic	44
	Chain Arithmetic	45
	Constant Arithmetic	48
	Order of Execution	49
	LAST X	50
	Complex domain LAST X	51

	Memory Organisation	52
	Global registers	53
	Global Register Access – Direct and Indirect	54
	Global Register Access – Out Of Range Error	55

	Cumulative Summation Registers – Sigma Data	55
	Program Steps & Subroutine Return Stack	57
	Local Data	57

	Clearing memory to make space	58
	Backing up the calculator memory - introduction	58
	Backing up the calculator memory – hot key shortcut	59
	Creating a new backup using ON & STO	59
	Restoring a backup using ON & RCL	59

	How STO (+,-,/,x) and RCL (+,-,/,x) access items in memory	60
	STO and RCL register access - summary	61
	How tests such as x=? access items in memory	61
	Tests x=? register access summary	62
	How simpler commands such as FIX access items in memory	62
	Temporary Alpha Layout	63

	Integer modes - using alternate bases	65
	Complement and unsigned mode	68
	1’s Complement Mode	68

	Viewing long number displays – introduction	69
	Viewing very long 64 bit binary numbers	71
	Leading Zero’s ON / OFF switch	73
	2’s Complement Mode	74
	Unsigned Mode	74

	Bit wise operations and integer math	75
	Integer arithmetic functions	77
	Addition, Subtraction, Multiplication and Division	78
	Addition and Subtraction in 1’s complement mode	79
	The carry flag during addition	80
	The carry flag during subtraction	80
	Overflow – WP 34S flag B	81
	Remainder after division and RMDR	82
	Square root	82
	Negative Numbers – changing signs	82
	Negative Numbers – absolute value	82

	Logical operations	83
	Logical NOT	83
	Logical AND	83
	Logical NAND	84
	Logical OR	84
	Logical NOR	85
	Logical XOR	85
	Logical XNOR	86

	Bit Shifting and Rotating	87
	Shifting Bits	87
	Logical Shifts	87
	Left and Right bitwise Justification	88
	Arithmetic Shift Right	89

	Rotating bits	89
	Rotation	90
	Rotation through the carry flag	90

	Negating, Asserting and testing the state of bits	91
	Testing bits	91

	Bit masks – left and right justified	92
	Mirroring bits	92
	Double Functions	92
	Double Multiply - DBLx	93
	Double Divide – DBL/	94
	Double Remainder	95

	Programming	97
	Keying in our first program – ‘CIR’	98
	Program Pointer	102
	Program-Entry mode	102
	Program-Step Number	102
	Inserting new program steps	102
	Deleting existing program steps	102
	Branching and Calling – what’s the difference?	103
	Program Labels	103
	Global Labels	103
	Local Labels	104
	Modifying ‘CIR’ to demonstrate global AND hotkey local labels	104
	Predefined local program labels A, B, C, D – hotkey labels	107
	Key Code Labels	107
	Number labels – 00 to 99	110

	Direct program execution using number labels	111
	Indirect program execution using number labels	112
	Indirect addressing – used to access the stack	113
	Deleting a specific program	114
	Deleting all programs	114
	Saving Programs to the Flash RAM Library - advanced	114
	Program Input / Output	115
	The Alpha Register – how to display text	116
	Inserting special characters into alpha	118
	Alpha Catalogues	118
	Common math symbol alpha catalogue	118
	Common math symbols super/subscripted alpha catalogue	119
	Punctuation symbol alpha catalogue	120
	Math symbols (stats & complex domain) alpha catalogue	121
	Arrows and extra math symbol alpha catalogue	122

	Other alpha characters obtained direct from the keyboard	122
	English alpha characters (A-Z, a-z)	122
	Number digits (0 to 9)	122
	Logic symbols	123
	Other useful h shifted misc symbols – including a space	123
	Other useful f shifted math symbols	123
	Greek character symbols	124

	Alpha Register Commands	125
	Parallel Resistor Program using static Alpha displays	126
	Archiving the program to the flash RAM library	130
	Debugging the parallel resistor program	131

	Simple Counting Program – showing a dynamic Alpha display	134
	Counting Program illustrating Loop Control	136
	Local Data - Variables	138
	Local Data - Flags	139
	Local Data - limitations	139

	Fractions	143
	Fraction modes – how the display works	144
	Exact fraction conversions	144
	Inexact fraction conversions	145

	Accuracy Indicators	145
	Fraction Mode – Rounding	147
	Fraction Mode – Limitations	147
	Larger fractions	147
	Controlling the fraction display format	148
	Setting the maximum denominator	149
	Setting the default fraction mode – max precision	149
	Setting the fraction mode to employ factors	149
	Setting a fixed fraction denominator	149

	Using fractions in programs	149

	Complex modes of operation - introduction	151
	Complex mode - extra function catalogue	152
	Complex number format	152
	Entering complex numbers and invoking complex functions	153
	The complex stack	154
	Complex Operations	155
	Operation on one complex number	155
	Operation on two complex numbers	156

	Unit conversions - introduction	158
	Immediate Conversions	158
	Functional based conversions	159
	Accepting a Conversion	160
	Combining Conversions	160
	Quick conversion inversion	161

	Constants – Introduction	163
	Use of constants in the complex domain	163

	Statistical Functions - Accumulations	165
	Deleting and Correcting Data	165
	Finding the Mean	165
	Standard Deviation	166
	Linear Regression	168
	Linear Estimation	170
	Correlation Coefficient	170

	Normal Distribution	171

	Factorial	174
	Percent of sum %∑	175
	Percentage Difference ∆%	176
	Hyperbolic Functions	177
	Calculator Hardware	180
	Replacing the batteries	180
	Hardware reset	181

	Calculator Firmware	182
	What version firmware is my calculator using?	182
	Upgrading firmware	182

	Subject Index	183

